# Planning under Uncertainty

‘Would you tell me, please, which way I ought to go from here?’ (asked Alice)

‘That depends a good deal on where you want to get to,’ said the Cat.

‘I don’t much care where—‘said Alice.

‘Then it doesn’t matter which way you go,’ said the Cat.

– Lewis Carroll, Alice’s Adventures in Wonderland

Let’s say that the board have sketched a future desired state (value of equity) of the company and that you are left to find if it is possible to get there and if so – the road to take. The first part implies to find out if the desired state belongs to a set of feasible future states to your company. If it does you will need a road map to get there, if it does not you will have to find out what additional means you will need to get there and if it is possible to acquire those.

The current state (equity value of) your company is in itself uncertain since it depends on future sales, costs and profit – variable that usually are highly uncertain. The desired future state is even more so since you need to find strategies (roads) that can take you there and of those the one best suited to the situation. The ‘best strategies’ will be those that with highest probability and lowest costs will give you the desired state that is, that has the desired state or a better one as a very probable outcome:

Each of the ‘best strategies’ will have many different combinations of values for the variables –that describe the company – that can give the desired state(s). Using Monte Carlo simulations this means that a few, some or many of the thousands of runs – or realizations of future states-will give equity value outcomes that fulfill the required state. What we need then is to find how each of these has come about – the transition – and select the most promising ones.

The S@R balance simulation model has the ability to make intermediate stops when the desired state(s) has been reached giving the opportunity to take out complete reports describing the state(s) and how it was reached and by what path of transitional states.

The flip side of this is that we can use the same model and the same assumptions to take out similar reports on how undesirable states were reached – and their path of transitional states. This set of reports will clearly describe the risks underlying the strategy and how and when they might occur.

The dominant strategy will then be the one that has the desired state or a better one as a very probable outcome and that have at the same time the least probability of highly undesirable outcomes (the stochastic dominant strategy):

Mulling over possible target- or scenario analysis; calculating backwards the value of each variable required to meet the target is a waste of time since both the environment is stochastic and a number of different paths (time-lines) can lead to the desired state:

And even if you could do the calculations, what would the probabilities be?

Carroll, L., (2010). *Alice**‘s Adventures in Wonderland -Original Version*. City: Cosimo Classics.