Warning: define(): Argument #3 ($case_insensitive) is ignored since declaration of case-insensitive constants is no longer supported in /home/u742613510/domains/strategy-at-risk.com/public_html/wp-content/plugins/wpmathpub/wpmathpub.php on line 65
Corporate risk analysis – Strategy @ Risk

Category: Corporate risk analysis

  • The Estimated Project Cost Distributions and the Final Project Cost

    The Estimated Project Cost Distributions and the Final Project Cost

    This entry is part 2 of 2 in the series The Norwegian Governmental Project Risk Assessment Scheme

    Everybody believes in the exponential law of errors: the experimenters, because they think it can be proved by mathematics; and the mathematicians, because they believe it has been established by observation. (Whittaker& Robinson, 1967)

    The growing use of Cost Risk Assessment models in public projects has raised some public concerns about its costs and the models ability to reduce cost overruns and correctly predict the projects final cost. We have in this article shown that the models are neither reliable nor valid, by calculating the probabilities of the projects final costs. The final cost and their probabilities indicate that the cost distributions do not adequately represent the actual cost distributions.

    Introduction

    In the previous post we found that the project cost distributions applied in the uncertainty analysis for 85 Norwegian public works projects were symmetric – and that they could be represented by normal distributions. Their P85/P50 ratios also suggested that they might come from the same normal distribution, since a normal distribution seemed to fit all the observed ratios. The quantile-quantile graph (q-q graph) below depicts this:

    Q-Q-plot#1As the normality test shows, it is not exactly normal ((As the graph shows is the distribution slightly skewed to the right)), but near enough normal for all practical purposes ((The corresponding linear regression gives a value of 0.9540 for the coefficient of determination (R).)). This was not what we would have expected to find.

    The question now is if the use of normal distributions representing the total project cost is a fruitful approach or not.

    We will study this by looking at the S/P50 ratio that is the ratio between the final (actual) total project cost – S and the P50 cost estimate. But first we will take a look at the projects individual cost distributions.

    The individual cost distributions

    By using the fact that the individual project’s cost are normally distributed and by using the P50 and P85 percentiles we can estimate the mean and variance for all the projects’ the cost distributions (Cook, 2010).

    In the graph below we have plotted the estimated relative cost distribution (cost/P50) for the projects with the smallest (light green) and the largest (dark green) variance. Between these curves lie the relative cost distributions for all the 85 projects.

    Between the light green and the blue curve we find 72 (85%) of the projects. The area between the blue and the dark green curve contains 13 of the projects – the projects with the highest variance:

    Relative-costThe differences between the individual relative cost distributions are therefore small. Average standard deviation for all 85 projects is 0.1035 with a coefficient of variation of 48%. For the 72 projects the average standard deviation are 0.0882 with a coefficient of variation of 36%. This is consistent with what we could see from the regression of P85 on P50.

    It is bewildering that a portfolio of so diverse projects can end up with such a small range of normal distributed cost.

    The S/P50 ratio

    A frequency graph of the 85 observed ratios (S/P50) shows a pretty much symmetric distribution, with a pronounced peak. It is slightly positively skewed, with a mean of 1.05, a maximum value of 1.79, a minimum value of 0.41 and a coefficient of variation of 20.3%:

    The-S-and-P85-ratioAt first glance this seems as a reasonable result; even if the spread is large, given that the project’s total cost has normal distributions.

    If the estimated cost distribution(s) gives a good representation of the underlying cost distribution, then – S – should also belong to that distribution. Have in mind that the only value we know with certainty to belong to the underlying cost distribution is – S, i.e. the final total project cost.

    It is there for of interest to find out if the S/P50 ratio(s) are consistent with the estimated distributions. We will try to investigate this by different routes, first by calculating at what probability the deviation of S from P50 occurred.

    What we need to find is, for each of the 85 projects, the probability of having had a final cost ratio (S/P50):

    i.    less or equal to the observed ratio for projects with S > P50 and
    ii.   Greater or equal to the observed ratio for projects with S < P50.

    The graph below depicts this. The maroon circles give the final cost ratio (S/P50) and their probabilities:

    Relative-cost#1A frequency graph of these probabilities should give a graph with a right tail, with most of the projects close to the 0.5 fractile (the median or P50 value), tapering off to the right as we move to higher fractiles.

    We would thus anticipate that most projects have been finished at or close to the quality assurance schemes median value i.e., having had a probability of 0.5 for having had this or a lower (higher) value as final cost ratio, and that only a few would have significant deviations from this.

    We will certainly not expect many of the final cost ratio probabilities above the 0.85 percentile (P85).

    The final cost probability frequency graph will thus give us some of the completing information needed to assess the soundness of using methods and simulation techniques ending up with symmetric project cost distributions.

    Final project cost ratio probability

    The result is given in the graph below, where the red bars indicates projects that with probabilities of 85% or more should have had lower (or higher) final cost ratios:

    Final-cost-probabilitiesThe result is far from what we expected: the projects probabilities are not concentrated at or close to 0.5 and the frequency graph is not tapering off to the right. On the contrary, the frequency of projects increases as we move to higher probabilities for the S/P50 ratios, and the highest frequency is for projects that with high probability should have had a much less or a much higher final cost:

    1. The final project cost ratio probabilities have a mean of 0.83, a median at 0.84 and a coefficient of variation of 21%.
    2. Of the 85 projects, 51 % have final cost ratios that had a probability of 84% or less of being lower (or higher) and 49% have final cost ratios that had a probability of 85% or more of being lower (higher).

    Almost fifty percent of the projects have thus been seriously under or over budgeted or have had large cost over- or underruns – according to the cost distributions established by the QA2 process.

    The cumulative frequency distribution below gives a more detailed description:

    Final-cost-probabilities#1It is difficult to say in what range the probability for the S/P85 ratio should have been for considering the estimated cost distributions to be “acceptable”. If the answer is “inside the quartile range”, then only 30% of the projects final cost forecasts can be regarded as acceptable.

    The assumption of normally distributed total project costs

    Based on the close relation between the P50 and P85 percentiles it is tempting to conclude that most if not all projects has had the same cost estimation validation process; using the same family of cost distributions, with the same shape parameter and assuming independent cost elements – ending up with a near normal or normal distribution for the projects total cost. I.e. all the P85/50 ratios belong to the same distribution.

    If this is the case, then also the projects final costs ratios should also belong to the same distribution. In the q-q graph below, we have added the S/P50 ratios (red) to the P85/P50 ratios (green) from the first q-q graph. If both ratios are randomly drawn from the same distribution, they should all fall close onto the blue identity line:

    Q-Q-plot#3The ratios are clearly not normaly distributed; the S/P50 ratios ends mostly up in both tails and the shape of the plotted ratios now indicates a distribution with heavy tails or may be with bimodality. The two ratios is hence most likely not from the same distribution.
    A q-q graphn with only the S/P50 ratios shows however that they might be normaly distributed, but have been taken from a different distribution than the P85/P50 ratios:

    Q-Q-plot#2The S/P50 ratios are clearly normaly distributed as they fall very close onto the identity line. The plotted ratios also indicates a little lighter tails than the corresponding theoretical distribution.

    That the two sets of ratios so clearly are different is not surprising, since the S/P50 ratios have a coeficient of variation of 20% while the same metric is 4.6% for the P85/P50 ratios ((The S/P50 ratios have a mean of 1.0486 and a standard deviation of 0.2133. The same metrics for the P85/P50 ratios is 1.1069 and 0.0511.)) .

    Since we want the S/P50 ratio to be as close to one as possible, we can regard the distribution of the S/P50 ratios as the QA2’s error distribution.This brings us to the question of the reliability and validity of the QA2 “certified” cost risk assessment model.

    Reliability and Validity

    The first that needs to be answered is then the certified model’s reliability in producing consistent results and second if the cost model really measures what we want to be measured.

    1. We will try to answer this by using the S/P50 probabilities defined above to depict:
      The precision ((ISO 5725-Accuracy of Measurement Methods and Results.))  of the forecasted costs distributions by the variance of the S/P50 probabilities, and
    2. The accuracy (or trueness) of the forecasts, or the closeness of the mean of the probabilities for the S/P50 ratio to the forecasts median value – 0.5.

    The first will give us an answer about the model’s reliability and the second an answer about the model’s validity:
    Accuracy-and-PrecisionA visual inspection of the graph gives an impression of both low precision and low accuracy:

    • the probabilities have a coefficient of variation of 21% and a very high density of final project costs ending up in the cost distributions tail ends, and
    • the mean of the probabilities is 0.83 giving a very low accuracy of the forecasts.

    The conclusion then must be that the cost models (s) are neither reliable nor valid:

    Unreliable_and_unvalidSummary

    We have in these two articles shown that the implementation of the QA2 scheme in Norway ends up with normally distributed project costs.

    i.    The final cost ratios (S/P50) and their probabilities indicate that the cost distributions do not adequately represent the actual distributions.
    ii.    The model (s) is neither reliable nor valid.
    iii.    We believe that this is due to the choice of risk models and technique and not to the actual risk assessment work.
    iv.    The only way to resolve this is to use proper Monte Carlo simulation models and techniques

    Final Words

    Our work reported in these two posts have been done out of pure curiosity after watching the program “Brennpunkt”. The data used have been taken from the program’s documentation.  Based on the results, we feel that our work should be replicated by the Department of Finance and with data from the original sources, to weed out possible errors.

    It should certainly be worth the effort:

    i.    The 85 project here, amounts to NOK 221.005 million with
    ii.    NOK 28.012 million in total deviation ((The sum of all deviations from the P50 values.))  from the P50 value
    iii.    NOK 19.495 million have unnecessary been held in reserve ((The P85 amount less the final project cost > zero.))  and
    iv.    The overruns ((The final project cost less the P50 amount > zero))  have been NOK 20.539 million
    v.    That is, nearly every fifth “krone” of the projects budgets has been “miss” allocated
    vi.    And there are many more projects to come.

    References

    Cook, J.D., (2010). Determining distribution parameters from quantiles.
    http://biostats.bepress.com/mdandersonbiostat/paper55

    Whittaker, E. T. and Robinson, G. (1967), Normal Frequency Distribution. Ch. 8 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 164-208, 1967. p. 179.

  • Risk Appetite and the Virtues of the Board

    Risk Appetite and the Virtues of the Board

    This entry is part 1 of 1 in the series Risk Appetite and the Virtues of the Board

     

     

     

    This article consists of two parts: Risk Appetite, and The Virtues of the Board. (Upcoming) This first part can be read as a standalone article, the second will be based on concepts developed in this part.

    Risk Appetite

    Multiple sources of risk are a fact of life. Only rarely will decisions concerning various risks be neatly separable. Intuitively, even when risks are statistically independent, bearing one risk should make an agent less willing to bear another. (Kimball, 1993)

    Risk appetite – the board’s willingness to bear risk – will depend both on the degree to which it dislikes uncertainty and to the level of that uncertainty. It is also likely to shift as the board respond to emerging market and macroeconomic uncertainty and events of financial distress.

    The following graph of the “price of risk[1]” index developed at the Bank of England shows this. (Gai & Vause, 2005)[2] The estimated series fluctuates close to the average “price of risk” most of the time, but has sharp downward spikes in times of financial crises. Risk appetite is apparently highly affected by exogenous shocks:

    Estimated_Risk_appetite_BE_In adverse circumstances, it follows that the board and the investors will require higher expected equity value of the firm to hold shares – an enhanced risk premium – and that their appetite for increased risk will be low.

    Risk Management and Risk Appetite

    Despite widespread use in risk management[3] and corporate governance literature, the term ‘risk appetite’[i] lacks clarity in how it is defined and understood:

    • The degree of uncertainty that an investor is willing to accept in respect of negative changes to its business or assets. (Generic)
    • Risk appetite is the degree of risk, on a broad-based level, that a company or other entity is willing to accept in the pursuit of its goals. (COSO)
    • Risk Appetite the amount of risk that an organisation is prepared to accept, tolerate, or be exposed to at any point in time (The Orange Book October 2004)

    The same applies to a number of other terms describing risk and the board’s attitudes to risk, as for the term “risk tolerance”:

    • The degree of uncertainty that an investor can handle in regard to a negative change in the value of his or her portfolio.
    • An investor’s ability to handle declines in the value of his/her portfolio.
    • Capacity to accept or absorb risk.
    • The willingness of an investor to tolerate risk in making investments, etc.

    It thus comes as no surprise that risk appetite and other terms describing risk are not well understood to a level of clarity that can provide a reference point for decision making[4]. Some takes the position that risk appetite never can be reduced to a sole figure or ratio, or to a single sentence statement. However to be able to move forward we have to try to operationalize the term in such a way that it can be:

    1. Used to commensurate risk with reward or to decide what level of risk that is commensurate with a particular reward and
    2. Measured and used to sett risk level(s) that, in the board’s view, is appropriate for the firm.

    It thus defines the boundaries of the activities the board intends for the firm, both to the management and the rest of the organization, by setting limits to risk taking and defining what acceptable risk means. This can again be augmented by a formal ‘risk appetite statement’ defining the types and levels of risk the organization is prepared to accept in pursuit of increased value.

    However, in view of the “price of risk” series above, such formal statements cannot be carved in stone or they have to contain rules for how they are to be applied in adverse circumstances, since they have to be subject to change as the business and macroeconomic climate changes.

    Deloitte’s Global Risk Management Survey 6. ed. (Deloitte, 2009) found that sixty-three percent of the institutions had a formal, approved statement of their risk appetite. (See Exhibit 4. below) Roughly one quarter of the institutions said they relied on quantitatively defined statements, while about one third used both quantitative and qualitative approaches:

    Risk-apptite_Deloitte_2009Using a formal ‘risk appetite statement’ is the best way for the board to communicate its visions, and the level and nature of the risks the board will consider as acceptable to the firm. This has to be quantitatively defined and be based on some opinion of the board’s utility function and use metrics that can fully capture all risks facing the company.

    We will in the following use the firm’s Equity Value as metric as this will capture all risks – those impacting the balance sheet, income statement, required capital and WACC etc.

    We will assume that the board’s utility function[5] have diminishing marginal utility for an increase in the company’s equity value. From this it follows that the board’s utility will decrease more with a loss of 1 $ than it will increase with a gain of 1 $. Thus the board is risk averse[ii].

    The upside-potential ratio

    To do this we will use the upside-potential ratio[6] (UPR), a measure developed as a measure of risk-adjusted returns (Sortino et al., 1999).  The UPR is a measure of the potential return on an asset relative to a preset return, per unit of downside risk. This ratio is a special case of the more general one-sided variability ratio Phib

    Phib p,q (X) := E1/p[{(X – b)+}p] / E1/q[{(X- b)}q],

    Where X is total return, (X-b) is excess return over the benchmark b[7] and the minus and plus sign denotes the left-sided moment (lower partial moment) and the right sided moment (upper partial moment) – of order p and q.

    The lower partial moment[8] is a measure of the “distance[9]” between risky situations and the corresponding benchmark when only unfavorably differences contribute to the “risk”. The upper partial moment on the other hand measures the “distance” between favorable situations and the benchmark.

    The Phi ratio is thus the ratio of “distances” between favorable and unfavorable events – when properly weighted (Tibiletti & Farinelli, 2002).

    For a fixed benchmark b, the higher Phi the more ‘profitable’ is the risky asset. Phi can therefore be used to rank risky assets. For a given asset, Phi will be a decreasing function of the benchmark b.

    The choice of values for p and q depends on the relevance given to the magnitude of the deviations from the benchmark b. The higher the values, the more emphasis are put on that tail. For p=q=1 we have the Omega index (Shadwick & Keating, 2002).

    The choice of p=1 and q=2, is assumed to fit a conservative investor while a value of p>>1 and q<<1 will be more in line with an aggressive investor (Caporin & Lisi, 2009).

    We will in the following use p=1 and q=2 for calculation of the upside-potential ratio (UPR) thus assuming that the board consists of conservative investors. For very aggressive boards other choices of p and q should be considered.

    LM-vs-UM#0The UPR for the firm can thus be expressed as a ratio of partial moments; that is as the ratio of the first order upper partial moment (UPM1)[10] and the second order lower partial moment (LPM2) (Nawrocki, 1999) and ( Breitmeyer, Hakenes & Pfingsten, 2001), or the over-performance divided by the root-mean-square of under-performance, both calculated at successive points on the probability distribution for the firm’s equity value.

    As we successively calculates the UPR starting at the left tail will the lower partial moment (LPM2) increase and the upper partial moment (UPM1) decrease:UPM+LPM The upside potential ratio will consequently decrease as we move from the lower left tail to the upper right tail – as shown in the figure below: Cum_distrib+UPRThe upside potential ratio have many interesting uses, one is shown in the table below. This table gives the upside potential ratio at budgeted value, that is the expected return above budget value per unit of downside risk – given the uncertainty the management for the individual subsidiaries have expressed. Most of the countries have budget values above expected value exposing downward risk. Only Turkey and Denmark have a ratio larger than one – all others have lager downward risk than upward potential. The extremes are Poland and Bulgaria.

    Country/
    Subsidiary
    Upside
    Potential Ratio
    Turkey2.38
    Denmark1.58
    Italy0.77
    Serbia0.58
    Switzerland0.23
    Norway0.22
    UK0.17
    Bulgaria0.08

    We will in the following use five different equity distributions, each representing a different strategy for the firm. The distributions (strategies) have approximately the same mean, but exhibits increasing variance as we move to successive darker curves. That is; an increase in the upside also will increase the possibility of a downside:

    Five-cutsBy calculating the UPR for successive points (benchmarks) on the different probability distribution for the firm’s equity value (strategies) we, can find the accompanying curves described by the UPR’s in the UPR and LPM2/UPM1 space[12], (Cumova & Nawrocki, 2003):

    Upside_potential_ratioThe colors of the curves give the corresponding equity value distributions shown above. We can see that the equity distribution with the longest upper and lower tails corresponds to the right curve for the UPR, and that the equity distribution with the shortest tails corresponds to the left (lowest upside-potential) curve.

    In the graph below, in the LPM2/UPM1 space, the curves for the UPR’s are shown for each of the different equity value distributions (or strategies). Each will give the rate the firm will have to exchange downside risk for upside potential as we move along the curve, given the selected strategy. The circles on the curves represent points with the same value of the UPR, as we move from one distribution to another:

    LM-vs-UM#2By connecting the points with equal value of the UPR we find the iso-UPR curves; the curves that give the same value for the UPR, across the strategies in the LPM2/UPM1 space:

    LM-vs-UM#3We have limited the number of UPR values to eight, but could of course have selected a larger number both inside and outside the limits we have set.

    The board now have the option of selecting the strategy they find most opportune, or the one that fits best to their “disposition” to risk by deciding the appropriate value of LPM2 and UPM1 or of the upside-potential ratio, and this what we will pursue further in the next part:  “The Virtues of the Board”.

    References

    Breitmeyer, C., Hakenes, H. and Pfingsten, A., (2001). The Properties of Downside Risk Measures. Available at SSRN: http://ssrn.com/abstract=812850 or http://dx.doi.org/10.2139/ssrn.812850.

    Caporin, M. & Lisi,F. (2009). Comparing and Selecting Performance Measures for Ranking Assets. Available at SSRN: http://ssrn.com/abstract=1393163 or http://dx.doi.org/10.2139/ssrn.1393163

    CRMPG III. (2008). The Report of the CRMPG III – Containing Systemic Risk: The Road to Reform. Counterparty Risk Management Policy Group. Available at: http://www.crmpolicygroup.org/index.html

    Cumova, D. & Nawrocki, D. (2003). Portfolio Optimization in an Upside Potential and Downside Risk Framework. Available at: http://www90.homepage.villanova.edu/michael.pagano/DN%20upm%20lpm%20measures.pdf

    Deloitte. (2009). Global Risk Management Survey: Risk management in the spotlight. Deloitte, Item #9067. Available at: http://www.deloitte.com/assets/Dcom-UnitedStates/Local%20Assets/Documents/us_fsi_GlobalRskMgmtSrvy_June09.pdf

    Ekern, S. (1980). Increasing N-th degree risk. Economics Letters, 6: 329-333.

    Gai, P.  & Vause, N. (2004), Risk appetite: concept and measurement. Financial Stability Review, Bank of England. Available at: http://www.bankofengland.co.uk/publications/Documents/fsr/2004/fsr17art12.pdf

    Illing, M., & Aaron, M. (2005). A brief survey of risk-appetite indexes. Bank of Canada, Financial System Review, 37-43.

    Kimball, M.S. (1993). Standard risk aversion.  Econometrica 61, 589-611.

    Menezes, C., Geiss, C., & Tressler, J. (1980). Increasing downside risk. American Economic Review 70: 921-932.

    Nawrocki, D. N. (1999), A Brief History of Downside Risk Measures, The Journal of Investing, Vol. 8, No. 3: pp. 9-

    Sortino, F. A., van der Meer, R., & Plantinga, A. (1999). The upside potential ratio. , The Journal of Performance Measurement, 4(1), 10-15.

    Shadwick, W. and Keating, C., (2002). A universal performance measure, J. Performance Measurement. pp. 59–84.

    Tibiletti, L. &  Farinelli, S.,(2002). Sharpe Thinking with Asymmetrical Preferences. Available at SSRN: http://ssrn.com/abstract=338380 or http://dx.doi.org/10.2139/ssrn.338380

    Unser, M., (2000), Lower partial moments as measures of perceived risk: An experimental study, Journal of Economic Psychology, Elsevier, vol. 21(3): 253-280.

    Viole, F & Nawrocki, D. N., (2010), The Utility of Wealth in an Upper and Lower Partial Moment Fabric). Forthcoming, Journal of Investing 2011. Available at SSRN: http://ssrn.com/abstract=1543603

    Notes

    [1] In the graph risk appetite is found as the inverse of the markets price of risk, estimated by the two probability density functions over future returns – one risk-neutral distribution and one subjective distribution – on the S&P 500 index.

    [2] For a good overview of risk appetite indexes, see “A brief survey of risk-appetite indexes”. (Illing & Aaron, 2005)

    [3] Risk Management all the processes involved in identifying, assessing and judging risks, assigning ownership, taking actions to mitigate or anticipate them, and monitoring and reviewing progress.

    [4] The Policy Group recommends that each institution ensure that the risk tolerance of the firm is established or approved by the highest levels of management and shared with the board. The Policy Group further recommends that each institution ensure that periodic exercises aimed at estimation of risk tolerance should be shared with the highest levels of management, the board of directors and the institution’s primary supervisor in line with Core Precept III. Recommendation IV-2b (CRMPG III, 2008).

    For an extensive list of Risk Tolerance articles, see: http://www.planipedia.org/index.php/Risk_Tolerance_(Research_Category)

    [5] See: http://en.wikipedia.org/wiki/Utility, http://en.wikipedia.org/wiki/Ordinal_utility and http://en.wikipedia.org/wiki/Expected_utility_theory.

    [6] The ratio was created by Brian M. Rom in 1986 as an element of Investment Technologies’ Post-Modern Portfolio theory portfolio optimization software.

    [7] ‘b’ is usually the target or required rate of return for the strategy under consideration, (‘b’ was originally known as the minimum acceptable return, or MAR). We will in the following calculate the UPR for successive benchmarks (points) covering the complete probability distribution for the firm’s equity value.

    [8] The Lower partial moments will uniquely determine the probability distribution.

    [9] The use of the term distance is not unwarranted; the Phi ratio is very similar to the ratio of two Minkowski distances of order p and q.

    [10] The upper partial-moment is equivalent to the full moment minus the lower partial-moment.

    [11] Since we don’t know the closed form for the equity distributions (strategies), the figure above have been calculated from a limited, but large number of partial moments.

    Endnotes

    [i] Even if they are not the same, the terms ‘‘risk appetite’’ and ‘‘risk aversion’’ are often used interchangeably. Note that the statement: “increasing risk appetite means declining risk aversion; decreasing risk appetite indicates increasing risk aversion” is not necessarily true.

    [ii] In the following we assume that the board is non-satiated and risk-averse, and have a non-decreasing and concave utility function – U(C) – with derivatives at least of degrees five and of alternating signs – i.e. having all odd derivatives positive and all even derivatives negative. This is satisfied by most utility functions commonly used in mathematical economics including all completely monotone utility functions, as the logarithmic, exponential and power utility functions.

     More generally, a decision maker can be said as being nth-degree risk averse if sign (un) = (−1)n+1 (Ekern,1980).

     

  • Inventory management – Stochastic supply

    Inventory management – Stochastic supply

    This entry is part 4 of 4 in the series Predictive Analytics

     

    Introduction

    We will now return to the newsvendor who was facing a onetime purchasing decision; where to set the inventory level to maximize expected profit – given his knowledge of the demand distribution.  It turned out that even if we did not know the closed form (( In mathematics, an expression is said to be a closed-form expression if it can be expressed analytically in terms of a finite number of certain “well-known” functions.)) of the demand distribution, we could find the inventory level that maximized profit and how this affected the vendor’s risk – assuming that his supply with certainty could be fixed to that level. But what if that is not the case? What if the supply his supply is uncertain? Can we still optimize his inventory level?

    We will look at to slightly different cases:

    1.  one where supply is uniformly distributed, with actual delivery from 80% to 100% of his ordered volume and
    2. the other where the supply have a triangular distribution, with actual delivery from 80% to 105% of his ordered volume, but with most likely delivery at 100%.

    The demand distribution is as shown below (as before):

    Maximizing profit – uniformly distributed supply

    The figure below indicates what happens as we change the inventory level – given fixed supply (blue line). We can see as we successively move to higher inventory levels (from left to right on the x-axis) that expected profit will increase to a point of maximum.

    If we let the actual delivery follow the uniform distribution described above, and successively changes the order point expected profit will follow the red line in the graph below. We can see that the new order point is to the right and further out on the inventory axis (order point). The vendor is forced to order more newspapers to ‘outweigh’ the supply uncertainty:

    At the point of maximum profit the actual deliveries spans from 2300 to 2900 units with a mean close to the inventory level giving maximum profit for the fixed supply case:

    The realized profits are as shown in the frequency graph below:

    Average profit has to some extent been reduced compared with the non-stochastic supply case, but more important is the increase in profit variability. Measured by the quartile variation, this variability has increased by almost 13%, and this is mainly caused by an increased negative skewness – the down side has been raised.

    Maximizing profit – triangular distributed supply

    Again we compare the expected profit with delivery following the triangular distribution as described above (red line) with the expected profit created by known and fixed supply (blue line).  We can see as we successively move to higher inventory levels (from left to right on the x-axis) that expected profits will increase to a point of maximum. However the order point for the stochastic supply is to the right and further out on the inventory axis than for the non-stochastic case:

    The uncertain supply again forces the vendor to order more newspapers to ‘outweigh’ the supply uncertainty:

    At the point of maximum profit the actual deliveries spans from 2250 to 2900 units with a mean again close to the inventory level giving maximum profit for the fixed supply case ((This is not necessarily true for other combinations of demand and supply distributions.)) .

    The realized profits are as shown in the frequency graph below:

    Average profit has somewhat been reduced compared with the non-stochastic supply case, but more important is the increase in profit variability. Measured by the quartile variation this variability has increased by 10%, and this is again mainly caused by an increased negative skewness – again have the down side been raised.

    The introduction of uncertain supply has shown that profit can still be maximized however the profit will be reduced by increased costs both in lost sales and in excess inventory. But most important, profit variability will increase raising issues of possible other strategies.

    Summary

    We have shown through Monte-Carlo simulations, that the ‘order point’ when the actual delivered amount is uncertain can be calculated without knowing the closed form of the demand distribution. We actually do not need the closed form for the distribution describing delivery, only historic data for the supplier’s performance (reliability).

    Since we do not need the closed form of the demand distribution or supply, we are not limited to such distributions, but can use historic data to describe the uncertainty as frequency distributions. Expanding the scope of analysis to include supply disruptions, localization of inventory etc. is thus a natural extension of this method.

    This opens for use of robust and efficient methods and techniques for solving problems in inventory management unrestricted by the form of the demand distribution and best of all, the results given as graphs will be more easily communicated to all parties than pure mathematical descriptions of the solutions.

    Average profit has to some extent been reduced compared with the non-stochastic supply case, but more important is the increase in profit variability. Measured by the quartile variation, this variability has increased by almost 13%, and this is mainly caused by an increased negative skewness – the down side has been raised.

  • Inventory management – Some effects of risk pooling

    Inventory management – Some effects of risk pooling

    This entry is part 3 of 4 in the series Predictive Analytics

    Introduction

    The newsvendor described in the previous post has decided to branch out having news boys placed at strategic corners in the neighborhood. He will first consider three locations, but have six in his sights.

    The question to be pondered is how many of the newspaper he should order for these three locations and the possible effects on profit and risk (Eppen, 1979) and (Chang & Lin, 1991).

    He assumes that the demand distribution he experienced at the first location also will apply for the two others and that all locations (point of sales) can be served from a centralized inventory. For the sake of simplicity he further assumes that all points of sales can be restocked instantly (i.e. zero lead time) at zero cost, if necessary or advantageous by shipment from one of the other locations and that the demand at the different locations will be uncorrelated. The individual point of sales will initially have a working stock, but will have no need of safety stock.

    In short is this equivalent to having one inventory serve newspaper sales generated by three (or six) copies of the original demand distribution:

    The aggregated demand distribution for the three locations is still positively skewed (0.32) but much less than the original (0.78) and has a lower coefficient of variation – 27% – against 45% for the original ((The quartile variation has been reduced by 37%.)):

    The demand variability has thus been substantially reduced by this risk pooling ((We distinguish between ten main types of risk pooling that may reduce total demand and/or lead time variability (uncertainty): capacity pooling, central ordering, component commonality, inventory pooling, order splitting, postponement, product pooling, product substitution, transshipments, and virtual pooling. (Oeser, 2011)))  and the question now is how this will influence the vendor’s profit.

    Profit and Inventory level with Risk Pooling

    As in the previous post we have calculated profit and loss as:

    Profit = sales less production costs of both sold and unsold items
    Loss = value of lost sales (stock-out) and the cost of having produced and stocked more than can be expected to be sold

    The figure below indicates what will happen as we change the inventory level. We can see as we successively move to higher levels (from left to right on the x-axis) that expected profit (blue line) will increase to a point of maximum – ¤16541 at a level of 7149 units:

    Compared to the point of maximum profit for a single warehouse (profit ¤4963 at a level of 2729 units, see previous post), have this risk pooling increased the vendors profit by 11.1% while reducing his inventory by 12.7%. Centralization of the three inventories has thus been a successful operational hedge ((Risk pooling can be considered as a form of operational hedging. Operational hedging is risk mitigation using operational instruments.))  for our newsvendor by mitigating some, but not all, of the demand uncertainty.

    Since this risk mitigation was a success the newsvendor wants to calculate the possible benefits from serving six newsboys at different locations from the same inventory.

    Under the same assumptions, it turns out that this gives an even better result, with an increase in profit of almost 16% and at the same time reducing the inventory by 15%:

    The inventory ‘centralization’ has then both increased profit and reduced inventory level compared to a strategy with inventories held at each location.

    Centralizing inventory (inventory pooling) in a two-echelon supply chain may thus reduce costs and increase profits for the newsvendor carrying the inventory, but the individual newsboys may lose profits due to the pooling. On the other hand, the newsvendor will certainly lose profit if he allows the newsboys to decide the level of their own inventory and the centralized inventory.

    One of the reasons behind this conflict of interests is that each of the newsvendor and newsboys will benefit one-sidedly from shifting the demand risk to another party even though the performance may suffer as a result (Kemahloğlu-Ziya, 2004) and (Anupindi and Bassok 1999).

    In real life, the actual risk pooling effects would depend on the correlations between each locations demand. A positive correlation would reduce the effect while a negative correlation would increase the effects. If all locations were perfectly correlated (positive) the effect would be zero and a correlation coefficient of minus one would maximize the effects.

    The third effect

    The third direct effect of risk pooling is the reduced variability of expected profit. If we plot the profit variability, measured by its coefficient of variation (( The coefficient of variation is defined as the ratio of the standard deviation to the mean – also known as unitized risk.)) (CV) for the three sets of strategies discussed above; one single inventory (warehouse), three single inventories versus all three inventories centralized and six single inventories versus all six centralized.

    The graph below depicts the situation. The three curves show the CV for corporate profit given the three alternatives and the vertical lines the point of profit for each alternative.

    The angle of inclination for each curve shows the profits sensitivity for changes in the inventory level and the location each strategies impact on the predictability of realized profit.

    A single warehouse strategy (blue) gives clearly a much less ability to predict future profit than the ‘six centralized warehouse’ (purple) while the ‘three centralized warehouse’ (green) fall somewhere in between:

    So in addition to reduced costs and increased profits centralization, also gives a more predictable result, and lower sensitivity to inventory level and hence a greater leeway in the practical application of different policies for inventory planning.

    Summary

    We have thus shown through Monte-Carlo simulations, that the benefits of pooling will increase with the number of locations and that the benefits of risk pooling can be calculated without knowing the closed form ((In mathematics, an expression is said to be a closed-form expression if it can be expressed analytically in terms of a finite number of certain “well-known” functions.)) of the demand distribution.

    Since we do not need the closed form of the demand distribution, we are not limited to low demand variability or the possibility of negative demand (Normal distributions etc.). Expanding the scope of analysis to include stochastic supply, supply disruptions, information sharing, localization of inventory etc. is natural extensions of this method ((We will return to some of these issues in later posts.)).

    This opens for use of robust and efficient methods and techniques for solving problems in inventory management unrestricted by the form of the demand distribution and best of all, the results given as graphs will be more easily communicated to all parties than pure mathematical descriptions of the solutions.

    References

    Anupindi, R. & Bassok, Y. (1999). Centralization of stocks: Retailers vs. manufacturer.  Management Science 45(2), 178-191. doi: 10.1287/mnsc.45.2.178, accessed 09/12/2012.

    Chang, Pao-Long & Lin, C.-T. (1991). Centralized Effect on Expected Costs in a Multi-Location Newsboy Problem. Journal of the Operational Research Society of Japan, 34(1), 87–92.

    Eppen,G.D. (1979). Effects of centralization on expected costs in a multi-location newsboy problem. Management Science, 25(5), 498–501.

    Kemahlioğlu-Ziya, E. (2004). Formal methods of value sharing in supply chains. PhD thesis, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, July 2004. http://smartech.gatech.edu/bitstream/1853/4965/1/kemahlioglu ziya_eda_200407_phd.pdf, accessed 09/12/2012.

    OESER, G. (2011). Methods of Risk Pooling in Business Logistics and Their Application. Europa-Universität Viadrina Frankfurt (Oder). URL: http://opus.kobv.de/euv/volltexte/2011/45, accessed 09/12/2012.

    Endnotes

  • Inventory Management: Is profit maximization right for you?

    Inventory Management: Is profit maximization right for you?

    This entry is part 2 of 4 in the series Predictive Analytics

     

    Introduction

    In the following we will exemplify how sales forecasts can be used to set inventory levels in single or in multilevel warehousing. By inventory we will mean a stock or store of goods; finished goods, raw materials, purchased parts, and retail items. Since the problem discussed is the same for both production and inventory, the two terms will be used interchangeably.

    Good inventory management is essential to the successful operation for most organizations both because of the amount of money the inventory represents and the impact that inventories have on the daily operations.

    An inventory can have many purposes among them the ability:

    1. to support independence of operations,
    2. to meet both anticipated and variation in demand,
    3. to decouple components of production and allow flexibility in production scheduling and
    4. to hedge against price increases, or to take advantage of quantity discounts.

    The many advantages of stock keeping must however be weighted against the costs of keeping the inventory. This can best be described as the “too much/too little problem”; order too much and inventory is left over or order too little and sales are lost.

    This can be as a single-period (a onetime purchasing decision) or a multi-period problem, involving a single warehouse or multilevel warehousing geographically dispersed. The task can then be to minimize the organizations total cost, maximize the level of customer service, minimize ‘loss’ or maximize profit etc.

    Whatever the purpose, the calculation will have to be based on knowledge of the sales distribution. In addition, sales will usually have a seasonal variance creating a balance act between production, logistic and warehousing costs. In the example given below the sales forecasts will have to be viewed as a periodic forecast (month, quarter, etc.).

    We have intentionally selected a ‘simple problem’ to highlight the optimization process and the properties of the optimal solution. The last is seldom described in the standard texts.

    The News-vendor problem

    The news-vendor is facing a onetime purchasing decision; to maximize expected profit so that the expected loss on the Qth unit equals the expected gain on the Qth unit:

    I.  Co * F(Q) = Cu * (1-F(Q)) , where

    Co = The cost of ordering one more unit than what would have been ordered if demand had been known – or the increase in profit enjoyed by having ordered one fewer unit,

    Cu = The cost of ordering one fewer unit than what would have been ordered if demand had been known  – or the increase in profit enjoyed by having ordered one more unit, and

    F(Q) = Demand Probability for q<= Q. By rearranging terms in the above equation we find:

    II.  F(Q) = Cu/{Co+Cu}

    This ratio is often called the critical ratio (CR). The usual way of solving this is to assume that the demand is normal distributed giving Q as:

    III.    Q = m + z * s, where: z = {Q-m}/s , is normal distributed with zero mean and variance equal  one.

    Demand unfortunately, rarely haves a normal distribution and to make things worse we usually don’t know the exact distribution at all. We can only ‘find’ it by Monte Carlo simulation and thus have to find the Q satisfying the equation (I) by numerical methods.

    For the news-vendor the inventory level should be set to maximize profit given the sales distribution. This implies that the cost of lost sales will have to be weighed against the cost of adding more to the stock.

    If we for the moment assume that all these costs can be regarded as fixed and independent of the inventory level, then the product markup (% of cost) will determine the optimal inventory level:

    IV. Cu= Co * (1+ {Markup/100}) 

    In the example given here the critical ratio is approx. 0.8.  The question then is if the inventory levels indicated by that critical ratio always will be the best for the organization.

    Expected demand

    The following graph indicates the news-vendors demand distribution. Expected demand is 2096 units ((Median demand is 1819 units and the demand lies most typically in the range of 1500 to 2000 units)), but the distribution is heavily skewed to the right ((The demand distribution has a skewness of 0.78., with a coefficient of variation of 0.45, a lower quartile of 1432 units and an upper quartile of 2720 units.))  so there is a possibility of demand exceeding the expected demand:

    By setting the product markup – in the example below it is set to 300% – we can calculate profit and loss based on the demand forecast.

    Profit and Loss (of opportunity)

    In the following we have calculated profit and loss as:

    Profit = sales less production costs of both sold and unsold items
    Loss = value of lost sales (stock-out) and the cost of having produced and stocked more than can be expected to be sold

    The figure below indicates what will happen as we change the inventory level. We can see as we successively move to higher levels (from left to right on the x-axis) that expected profit (blue line) will increase to a point of maximum  ¤4963 at a level of 2729 units:

    At that point we can expect to have some excess stock and in some cases also lost sales. But regardless, it is at this point that expected profit is maximized, so this gives the optimal stock level.

    Since we include both costs of sold and unsold items, the point giving expected maximum profit will be below the point minimizing expected loss –¤1460 at a production level of 2910 units.

    Given the optimal inventory level (2729 units) we find the actual sales frequency distribution as shown in the graph below. At this level we expect an average sale of 1920 units – ranging from 262 to 2729 units ((Having a lower quartile of 1430 units and an upper quartile of 2714 units.)).

    The graph shows that the distribution possesses two different modes ((The most common value in a set of observations.)) or two local maxima. This bimodality is created by the fact that the demand distribution is heavily skewed to the right so that demand exceeding 2729 units will imply 2729 units sold with the rest as lost sales.

    This bimodality will of course be reflected in the distribution of realized profits. Have in mind that the line (blue) giving maximum profit is an average of all realized profits during the Monte Carlo simulation given the demand distribution and the selected inventory level. We can therefore expect realized profit both below and above this average (¤4963) – as shown in the frequency graph below:

    Expected (average) profit is ¤4963, with a minimum of ¤1681 and a maximum of ¤8186, the range of realized profits is therefore very large ((Having a lower quartile of ¤2991 and an upper quartile of ¤8129.)) ¤9867.

    So even if we maximize profit we can expect a large variation in realized profits, there is no way that the original uncertainty in the demand distribution can be reduced or removed.

    Risk and Reward

    Increased profit comes at a price: increased risk. The graph below describes the situation; the blue curve shows how expected profit increases with the production or inventory (service) level. The spread between the green and red curves indicates the band where actual profit with 80% probability will fall. As is clear from the graph, this band increases in width as we move to the right indicating an increased upside (area up to the green line) but also an increased probability for a substantial downside (area down to the red line:

    For some companies – depending on the shape of the demand distribution – other concerns than profit maximization might therefore be of more importance – like predictability of results (profit). The act of setting inventory or production levels should accordingly be viewed as an element for the boards risk assessments.

    On the other hand will the uncertainty band around loss as the service level increases decrease. This of course lies in the fact that loss due to lost sales diminishes as the service level increases and the that the high markup easily covers the cost of over-production.

    Thus a strategy of ‘loss’ minimization will falsely give a sense of ‘risk minimization’, while it in reality increases the uncertainty of future realized profit.

    Product markup

    The optimal stock or production level will be a function of the product markup. A high markup will give room for a higher level of unsold items while a low level will necessitate a focus on cost reduction and the acceptance of stock-out:

    The relation between markup (%) and the production level is quadratic ((Markup (%) = 757.5 – 0.78*production level + 0.00023*production level2))  implying that markup will have to be increasingly higher, the further out on the right tail we fix the production level.

    The Optimal inventory (production) level

    If we put it all together we get the chart below. In this the green curve is the accumulated sales giving the probability of the level of sales and the brown curve the optimal stock or production level given the markup.

    The optimal stock level is then found by drawing a line from the right markup axis (right y-axis) to the curve (red) for optimal stock level, and down to the x-axis giving the stock level. By continuing the line from the markup axis to the probability axis (left y-axis) we find the probability level for stock-out (1-the cumulative probability) and the probability for having a stock level in excess of demand:

    By using the sales distribution we can find the optimal stock/production level given the markup and this would not have been possible with single point sales forecasts – that could have ended up almost anywhere on the curve for forecasted sales.

    Even if a single point forecast managed to find expected sales – as mean, mode or median – it would have given wrong answers about the optimal stock/production level, since the shape of the sales distribution would have been unknown.

    In this case with the sales distribution having a right tail the level would have been to low – or with low markup, to high. With a left skewed sales distribution the result would have been the other way around: The level would have been too high and with low markup probably too low.

    In the case of multilevel warehousing, the above analyses have to be performed on all levels and solved as a simultaneous system.

    The state of affairs at the point of maximum

    To have the full picture of the state of affairs at the point of maximum we have to take a look at what we can expect of over- and under-production. At the level giving maximum expected profit we will on

    average have an underproduction of 168 units, ranging from zero to nearly 3000 ((Having a coefficient of variation of almost 250%)). On the face of it this could easily be interpreted as having set the level to low, but as we shall see that is not the case.

    Since we have a high markup, lost sales will weigh heavily in the profit maximization and as a result of this we can expect to have unsold items in our stock at the end of the period. On average we will have a little over 800 units left in stock, ranging from zero to nearly 2500. The lower quartile is 14 units and the upper is 1300 units so in 75% of the cases we will have an overproduction of less than 1300 units. However in 25% of the cases the overproduction will be in the range from 1300 to 2500 units.

    Even with the possibility of ending up at the end of the period with a large number of unsold units, the strategy of profit maximization will on average give the highest profit. However, as we have seen, with a very high level of uncertainty about the actual profit being realized.

    Now, since a lower inventory level in this case only will reduce profit by a small amount but lower the confidence limit by a substantial amount, other strategies giving more predictability for the actual result should be considered.

  • Budgeting Revisited

    Budgeting Revisited

    This entry is part 2 of 2 in the series Budgeting

     

    Introduction

    Budgeting is one area that is well suited for Monte Carlo Simulation. Budgeting involves personal judgments about future values of large number of variables like; sales, prices, wages, down- time, error rates, exchange rates etc. – variables that describes the nature of the business.

    Everyone that has been involved in a budgeting process knows that it is an exercise in uncertainty; however it is seldom described in this way and even more seldom is uncertainty actually calculated as an integrated part of the budget.

    Good budgeting practices are structured to minimize errors and inconsistencies, drawing in all the necessary participants to contribute their business experience and the perspective of each department. Best practice in budgeting entails a mixture of top-down guidelines and standards, combined with bottom-up individual knowledge and experience.

    Excel, the de facto tool for budgeting, is a powerful personal productivity tool. Its current capabilities, however, are often inadequate to support the critical nature of budgeting and forecasting. There will come a point when a company’s reliance on spreadsheets for budgeting leads to severely ineffective decision-making, lost productivity and lost opportunities.

    Spreadsheets can accommodate many tasks – but, over time, some of the models running in Excel may grow too big for the spreadsheet application. Programming in a spreadsheet model often requires embedded assumptions, complex macros, creating opportunities for formula errors and broken links between workbooks.

    It is common for spreadsheet budget models and their intricacies to be known and maintained by a single person who becomes a vulnerability point with no backup. And there are other maintenance and usage issues:

    A.    Spreadsheet budget models are difficult to distribute and even more difficult to collect and consolidate.
    B.    Data confidentiality is almost impossible to maintain in spreadsheets, which are not designed to hide or expose data based upon each user’s role.
    C.    Financial statements are usually not fully integrated leaving little basis for decision making.

    These are serious drawbacks for corporate governance and make the audit process more difficult.

    This is a few of many reasons why we use a dedicated simulation language for our models that specifically do not mix data and code.

    The budget model

    In practice budgeting can be performed on different levels:
    1.    Cash Flow
    2.    EBITDA
    3.    EBIT
    4.    Profit or
    5.    Company value.

    The most efficient is on EBITDA level, since taxes, depreciation and amortization on the short-term is mostly given. This is also the level where consolidation of daughter companies easiest is achieved. An EBITDA model describing the firm’s operations can again be used as a subroutine for more detailed and encompassing analysis thru P&L and Balance simulation.

    The aim will then to estimate of the firm’s equity value and is probability distribution. This can again be used for strategy selection etc.

    Forecasting

    In today’s fast moving and highly uncertain markets, forecasting have become the single most important element of the budget process.

    Forecasting or predictive analytics can best be described as statistic modeling enabling prediction of future events or results, using present and past information and data.

    1. Forecasts must integrate both external and internal cost and value drivers of the business.
    2. Absolute forecast accuracy (i.e. small confidence intervals) is less important than the insight about how current decisions and likely future events will interact to form the result.
    3. Detail does not equal accuracy with respect to forecasts.
    4. The forecast is often less important than the assumptions and variables that underpin it – those are the things that should be traced to provide advance warning.
    5.  Never relay on single point or scenario forecasting.

    All uncertainty about the market sizes, market shares, cost and prices, interest rates, exchange rates and taxes etc. – and their correlation will finally end up contributing to the uncertainty in the firm’s budget forecasts.

    The EBITDA model

    The EBITDA model have to be detailed enough to capture all important cost and value drivers, but simple enough to be easy to update with new data and assumptions.

    Input to the model can come from different sources; any internal reporting system or spread sheet. The easiest way to communicate with the model is by using Excel  spread sheet – templates.

    Such templates will be pre-defined in the sense that the information the model needs is on a pre-determined place in the workbook.  This makes it easy if the budgets for daughter companies is reported (and consolidated) in a common system (e.g. SAP) and can ‘dump’ onto an excel spread sheet. If the budgets are communicated directly to head office or the mother company then they can be read directly by the model.

    Standalone models and dedicated subroutines

    We usually construct our EBITDA models so that they can be used both as a standalone model and as a subroutine for balance simulation. The model can then be used both for short term budgeting and long-term EBITDA forecasting and simulation and for short/long term balance forecasting and simulation. This means that the same model can be efficiently reused in different contexts.
    Rolling budgets and forecast

    The EBITDA model can be constructed to give rolling forecast based on updated monthly or quarterly values, taking into consideration the seasonality of the operations. This will give new forecasts (new budget) for the remaining of the year and/or the next twelve month. By forecasts we again mean the probability distributions for the budget variables.

    Even if the variables have not changed, the fact that we move towards the end of the year will reduce the uncertainty of if the end year results and also for the forecast for the next twelve month.

    Uncertainty

    The most important part of budgeting with Monte Carlo simulation is assessment of the uncertainty in the budgeted (forecasted) cost and value drivers. This uncertainty is given as the most likely value (usually the budget figure) and the interval where it is assessed with a high degree of confidence (approx. 95%) to fall.

    We will then use these lower and upper limits (5% and 95%) for sales, prices and other budget items and the budget values as indicators of the shape of the probability distributions for the individual budget items. Together they described the range and uncertainty in the EBITDA forecasts.

    This gives us the opportunity to simulate (Monte Carlo) a number of possible outcomes – by a large number of runs of the model, usually 1000 – of net revenue, operating expenses and finally EBITDA. This again will give us their probability distributions

    Most managers and their staff have, based on experience, a good grasp of the range in which the values of their variables will fall. It is not based on any precise computation but is a reasonable assessment by knowledgeable persons. Selecting the budget value however is more difficult. Should it be the “mean”
    or the “most likely value” or should the manager just delegate fixing of the values to the responsible departments?

    Now we know that the budget values might be biased by a number of reasons – simplest by bonus schemes etc. – and that budgets based on average assumptions are wrong on average .

    This is therefore where the individual mangers intent and culture will be manifested, and it is here the greatest learning effect for both the managers and the mother company will be, as under-budgeting  and overconfidence  will stand out as excessive large deviations from the model calculated expected value (probability weighted average over the interval).

    Output

    The output from the Monte Carlo simulation will be in the form of graphs that puts all run’s in the simulation together to form the cumulative distribution for the operating expenses (red line):

    In the figure we have computed the frequencies of observed (simulated) values for operating expenses (blue frequency plot) – the x-axis gives the operating expenses and the left y-axis the frequency. By summing up from left to right we can compute the cumulative probability curve. The s-shaped curve (red) gives for every point the probability (on the right y-axis) for having an operating expenses less than the corresponding point on the x-axis. The shape of this curve and its range on the x-axis gives us the uncertainty in the forecasts.

    A steep curve indicates little uncertainty and a flat curve indicates greater uncertainty.  The curve is calculated from the uncertainties reported in the reporting package or templates.

    Large uncertainties in the reported variables will contribute to the overall uncertainty in the EBITDA forecast and thus to a flatter curve and contrariwise. If the reported uncertainty in sales and prices has a marked downside and the costs a marked upside the resulting EBITDA distribution might very well have a portion on the negative side on the x-axis – that is, with some probability the EBITDA might end up negative.

    In the figure below the lines give the expected EBITDA and the budget value. The expected EBIT can be found by drawing a horizontal line from the 0.5 (50%) point on the y-axis to the curve and a vertical line from this point on the curve to the x-axis. This point gives us the expected EBITDA value – the point where it is 50% probability of having a value of EBITDA below and 100%-50%=50% of having it above.

    The second set of lines give the budget figure and the probability that it will end up lower than budget. In this case it is almost a 100% probability that it will be much lower than the management have expected.

    This distributions location on the EBITDA axis (x-axis) and its shape gives a large amount of information of what we can expect of possible results and their probability.

    The following figure that gives the EBIT distributions for a number of subsidiaries exemplifies this. One wills most probable never earn money (grey), three is cash cows (blue, green and brown) and the last (red) can earn a lot of money:

    Budget revisions and follow up

    Normally – if something extraordinary does not happen – we would expect both the budget and the actual EBITDA to fall somewhere in the region of the expected value. We have however to expect some deviation both from budget and expected value due to the nature of the industry.  Having in mind the possibility of unanticipated events or events “outside” the subsidiary’s budget responsibilities, but affecting the outcome this implies that:

    • Having the actual result deviating from budget is not necessary a sign of bad budgeting.
    • Having the result close to or on budget is not necessary a sign of good budgeting.

    However:

    •  Large deviations between budget and actual result needs looking into – especially if the deviation to expected value also is large.
    • Large deviation between budget and expected value can imply either that the limits are set “wrong” or that the budget EBITDA is not reflecting the downside risk or upside opportunity expressed by the limits.

    Another way of looking at the distributions is by the probabilities of having the actual result below budget that is how far off line the budget ended up. In the graph below, country #1’s budget came out with a probability of 72% of having the actual result below budget.  It turned out that the actual figure with only 36% probability would have been lower. The length of the bars thus indicates the budget discrepancies.

    For country# 2 it is the other way around: the probability of having had a result lower than the final result is 88% while the budgeted figure had a 63% probability of having been too low. In this case the market was seriously misjudged.

    In the following we have measured the deviation of the actual result both from the budget values and from the expected values. In the figures the left axis give the deviation from expected value and the bottom axis the deviation from budget value.

    1.  If the deviation for a country falls in the upper right quadrant the deviation are positive for both budget and expected value – and the country is overachieving.
    2. If the deviation falls in the lower left quadrant the deviation are negative for both budget and expected value – and the country is underachieving.
    3. If the deviation falls in the upper left quadrant the deviation are negative for budget and positive for expected value – and the country is overachieving but has had a to high budget.

    With a left skewed EBITDA distribution there should not be any observations in the lower right quadrant that will only happen when the distribution is skewed to the right – and then there will not be any observations in the upper left quadrant:

    As the manager’s gets more experienced in assessing the uncertainty they face, we see that the budget figures are more in line with the expected values and that the interval’s given is shorter and better oriented.

    If the budget is in line with expected value given the described uncertainty, the upside potential ratio should be approx. one. A high value should indicate a potential for higher EBITDA and vice versa. Using this measure we can numerically describe the managements budgeting behavior:

    Rolling budgets

    If the model is set up to give rolling forecasts of the budget EBITDA as new and in this case monthly data, we will get successive forecast as in the figure below:

    As data for new month are received, the curve is getting steeper since the uncertainty is reduced. From the squares on the lines indicating expected value we see that the value is moving slowly to the right and higher EBITDA values.

    We can of course also use this for long term forecasting as in the figure below:

    As should now be evident; the EBITDA Monte Carlo model have multiple fields of use and all of them will increases the managements possibilities of control and foresight giving ample opportunity for prudent planning for the future.