Warning: define(): Argument #3 ($case_insensitive) is ignored since declaration of case-insensitive constants is no longer supported in /home/u742613510/domains/strategy-at-risk.com/public_html/wp-content/plugins/wpmathpub/wpmathpub.php on line 65
Corporate risk analysis – Page 3 – Strategy @ Risk

Category: Corporate risk analysis

  • Planning under Uncertainty

    Planning under Uncertainty

    This entry is part 3 of 6 in the series Balance simulation

     

    ‘Would you tell me, please, which way I ought to go from here?’ (asked Alice)
    ‘That depends a good deal on where you want to get to,’ said the Cat.
    ‘I don’t much care where—‘said Alice.
    ‘Then it doesn’t matter which way you go,’ said the Cat.
    –    Lewis Carroll, Alice’s Adventures in Wonderland

    Let’s say that the board have sketched a future desired state (value of equity) of the company and that you are left to find if it is possible to get there and if so – the road to take. The first part implies to find out if the desired state belongs to a set of feasible future states to your company. If it does you will need a road map to get there, if it does not you will have to find out what additional means you will need to get there and if it is possible to acquire those.

    The current state (equity value of) your company is in itself uncertain since it depends on future sales, costs and profit – variable that usually are highly uncertain. The desired future state is even more so since you need to find strategies (roads) that can take you there and of those the one best suited to the situation. The ‘best strategies’ will be those that with highest probability and lowest costs will give you the desired state that is, that has the desired state or a better one as a very probable outcome:

    Each of the ‘best strategies’ will have many different combinations of values for the variables –that describe the company – that can give the desired state(s). Using Monte Carlo simulations this means that a few, some or many of the thousands of runs – or realizations of future states-will give equity value outcomes that fulfill the required state. What we need then is to find how each of these has come about – the transition – and select the most promising ones.

    The S@R balance simulation model has the ability to make intermediate stops when the desired state(s) has been reached giving the opportunity to take out complete reports describing the state(s) and how it was reached and by what path of transitional states.

    The flip side of this is that we can use the same model and the same assumptions to take out similar reports on how undesirable states were reached – and their path of transitional states. This set of reports will clearly describe the risks underlying the strategy and how and when they might occur.

    The dominant strategy will then be the one that has the desired state or a better one as a very probable outcome and that have at the same time the least probability of highly undesirable outcomes (the stochastic dominant strategy):

    Mulling over possible target- or scenario analysis; calculating backwards the value of each variable required to meet the target is a waste of time since both the environment is stochastic and a number of different paths (time-lines) can lead to the desired state:

    And even if you could do the calculations, what would the probabilities be?

    Carroll, L., (2010). Alice‘s Adventures in Wonderland -Original Version. City: Cosimo Classics.

  • Uncertainty modeling

    Uncertainty modeling

    This entry is part 2 of 3 in the series What We Do

    Prediction is very difficult, especially about the future.
    Niels Bohr. Danish physicist (1885 – 1962)

    Strategy @ Risks models provide the possibility to study risk and uncertainties related to operational activities;  cost, prices, suppliers,  markets, sales channels etc. financial issues like; interest rates risk, exchange rates risks, translation risk , taxes etc., strategic issues like investments in new or existing activities, valuation and M&As’ etc and for a wide range of budgeting purposes.

    All economic activities have an inherent volatility that is an integrated part of its operations. This means that whatever you do some uncertainty will always remain.

    The aim is to estimate the economic impact that such critical uncertainty may have on corporate earnings at risk. This will add a third dimension – probability – to all forecasts, give new insight: the ability to deal with uncertainties in an informed way and thus benefits above ordinary spread-sheet exercises.

    The results from these analyzes can be presented in form of B/S and P&L looking at the coming one to five (short term) or five to fifteen years (long term); showing the impacts to e.g. equity value, company value, operating income etc. With the purpose of:

    • Improve predictability in operating earnings and its’ expected volatility
    • Improve budgeting processes, predicting budget deviations and its’ probabilities
    • Evaluate alternative strategic investment options at risk
    • Identify and benchmark investment portfolios and their uncertainty
    • Identify and benchmark individual business units’ risk profiles
    • Evaluate equity values and enterprise values and their uncertainty in M&A processes, etc.

    Methods

    To be able to add uncertainty to financial models, we also have to add more complexity. This complexity is inevitable, but in our case, it is desirable and it will be well managed inside our models.

    People say they want models that are simple, but what they really want is models with the necessary features – that are easy to use. If something is complex but well designed, it will be easy to use – and this holds for our models.

    Most companies have some sort of model describing the company’s operations. They are mostly used for budgeting, but in some cases also for forecasting cash flow and other important performance measures. Almost all are deterministic models based on expected or average values of input data; sales, cost, interest and currency rates etc.

    We know however that forecasts based on average values are on average wrong. In addition will deterministic models miss the important uncertainty dimension that gives both the different risks facing the company and the opportunities they bring forth.

    S@R has set out to create models that can give answers to both deterministic and stochastic questions, by linking dedicated Ebitda models to holistic balance simulation taking into account all important factors describing the company. The basis is a real balance simulation model – not a simple cash flow forecast model.

    Both the deterministic and stochastic balance simulation can be set about in two different alternatives:

    1. by a using a EBITDA model to describe the companies operations or
    2. by using coefficients of fabrications (e.g. kg flour pr 1000 bread etc.) as direct input to the balance model – the ‘short cut’ method.

    The first approach implies setting up a dedicated Ebitda subroutine to the balance model. This will give detailed answers to a broad range of questions about markets, capacity driven investments, operational performance and uncertainty, but entails a higher degree of effort from both the company and S@R. This is a tool for long term planning and strategy development.

    The second (‘the short cut’) uses coefficients of fabrications and their variations, and is a low effort (cost) alternative, usually using the internal accounting as basis. This will in many cases give a ‘good enough’ description of the company – its risks and opportunities. It can be based on existing investment and market plans.  The data needed for the company’s economic environment (taxes, interest rates etc) will be the same in both alternatives:

    The ‘short cut’ approach is especially suited for quick appraisals of M&A cases where time and data is limited and where one wishes to limit efforts in an initial stage. Later the data and assumptions can be augmented to much more sophisticated analysis within the same ‘short cut’ framework. In this way analysis can be successively built in the direction the previous studies suggested.

    This also makes it a good tool for short-term (3-5 years) analysis and even for budget assessment. Since it will use a limited number of variables – usually less than twenty – describing the operations, it is easy to maintain and operate. The variables describing financial strategy and the economic environment come in addition, but will be easy to obtain.

    Used in budgeting it will give the opportunity to evaluate budget targets, their probable deviation from expected result and the probable upside or down side given the budget target (Upside/downside ratio).

    Done this way analysis can be run for subsidiaries across countries translating the P&L and Balance to any currency for benchmarking, investment appraisals, risk and opportunity assessments etc. The final uncertainty distributions can then be “aggregated’ to show global risk for the mother company.

    An interesting feature is the models ability to start simulations with an empty opening balance. This can be used to assess divisions that do not have an independent balance since the model will call for equity/debt etc. based on a target ratio, according to the simulated production and sales and the necessary investments. Questions about further investment in divisions or product lines can be studied this way.

    Since all runs (500 to 1000) in the simulation produces a complete P&L and Balance the uncertainty curve (distribution) for any financial metric like ‘Yearly result’, ‘free cash flow’, economic profit’, ‘equity value’, ‘IRR’ or’ translation gain/loss’ etc. can be produced.

    In some cases we have used both approaches for the same client, using the last approach for smaller daughter companies with production structures differing from the main companies.
    The second approach can also be considered as an introduction and stepping stone to a more holistic Ebitda model.

    Time and effort

    The work load for the client is usually limited to a small team of people ( 1 to 3 persons) acting as project leaders and principal contacts, assuring that all necessary information, describing value and risks for the clients’ operations can be collected as basis for modeling and calculations. However the type of data will have to be agreed upon depending on the scope of analysis.

    Very often will key people from the controller group be adequate for this work and if they don’t have the direct knowledge they usually know who to ask. The work for this team, depending on the scope and choice of method (see above) can vary in effective time from a few days to a couple of weeks, but this can be stretched from three to four weeks to the same number of months.

    For S&R the time frame will depend on the availability of key personnel from the client and the availability of data. For the second alternative it can take from one to three weeks of normal work to three to six months for the first alternative for more complex models. The total time will also depend on the number of analysis that needs to be run and the type of reports that has to be delivered.

    S@R_ValueSim

    Selecting strategy

    Models like this are excellent for selection and assessment of strategies. Since we can find the probability distribution for equity value, changes in this brought by different strategies will form a basis for selection or adjustment of current strategy. Models including real option strategies are a natural extension of these simulation models:

    If there is a strategy with a curve to the right and under all other feasible strategies this will be the stochastic dominant one. If the curves crosses further calculations needs to be done before a stochastic dominant or preferable strategy can be found:

    Types of problems we aim to address:

    The effects of uncertainties on the P&L and Balance and the effects of the Boards strategies (market, hedging etc.) on future P&L and Balance sheets evaluating:

    • Market position and potential for growth
    • Effects of tax and capital cost
    • Strategies
    • Business units, country units or product lines –  capital allocation – compare risk, opportunity and expected profitability
    • Valuations, capital cost and debt requirements, individually and effect on company
    • The future cash-flow volatility of company and the individual BU’s
    • Investments, M&A actions, their individual value, necessary commitments and impact on company
    • Etc.

    The aim regardless of approach is to quantify not only the company’s single and aggregated risks, but also the potential, thus making the company capable to perform detailed planning and of executing earlier and more apt actions against uncertain factors.

    Used in budgeting, this will improve budget stability through higher insight in cost side risks and income-side potentials. This is achieved by an active budget-forecast process; the control-adjustment cycle will teach the company to better target realistic budgets – with better stability and increased company value as a result.

    This is most clearly seen when effort is put into correctly evaluating strategies-projects and investments effects on the enterprise. The best way to do this is by comparing and Choosing strategies by analyzing the individual strategies risks and potential – and select the alternative that is dominant (stochastic) given the company’s chosen risk-profile.

    A severe depression like that of 1920-1921 is outside the range of probability. –The Harvard Economic Society, 16 November 1929

  • Stochastic Balance Simulation

    Stochastic Balance Simulation

    This entry is part 1 of 6 in the series Balance simulation

    Introduction

    Most companies have some sort of model describing the company’s operations. They are mostly used for budgeting, but in some cases also for forecasting cash flow and other important performance measures. Almost all are deterministic models based on a single values forecasts; the expected or average value of the input data; sales, cost, interest and currency rates etc. We know however that forecasts based on average values are on average wrong (Savage, 2002).  In addition deterministic models will miss the important dimension of uncertainty – that gives both the different risks facing the company and the opportunities they produce.

    In contrast, a stochastic model will be calculated a large number of times with different values for the input variable drawn from all possible values of the individual variables. Each run will then give a probable realization of future cash flow or of the company’s equity value etc. With thousands of runs we can plot the relative frequencies of the calculated values:

    and thus, we have succeeded in generating the probability distribution for the company’s equity value. In insurance this type of technique is often called Dynamic Financial Analysis (DFA) which actually is a fitting name.

    The Balance Simulation Model

    The main tool in the S&R toolbox is the balance model. The starting point is the company’s balance, which is treated as the simulations opening balance. In the case of a greenfield project – new factories, power plants, airports, etc. built from scratch – the opening balance is empty.

    The successive balances are then built from the Profit & Loss, by simulation of the company’s operation thru an EBITDA model mimicking the real life operations. Investments can be driven by demand (capacity calculations) or by investment programs giving the necessary or planned production capacity. The model will throughout the simulation raise debt (short and/or long term) or equity (domestic or foreign) according to the financial strategy set out by the company and the difference between cash outflow and inflow adjusted for the minimum cash level.

    Since this is a dynamic model, it will raise equity when losses occur and/or the maximum Debt/equity ratio has been exceeded. On the other hand it will repay loans, pay dividend, repurchase shares or purchase excess marketable securities (cash above the need for the operations) – all in line with the board’s shareholder strategy.

    The ledger and Double-entry Bookkeeping

    The activity described in the EBITDA model; investments, purchase of raw materials, production, payment of wages, income from sales, payment of special taxes on investments etc. is registered as transactions in the ledger, following a standard chart of accounts with double-entry bookkeeping. In a similar fashion are all financial transactions; loans repayments, cash, taxes paid and deferred, Agio and Disagio, etc. posted in the ledger. Currently, approximately 400 accounts are in use.

    The Trial Balance and the Financial Statements

    The trial balance (Post-Closing) is compiled and checked for balance between total debts and total credits. The income statement is then prepared using revenue and expense accounts from the trial balance and the balance sheet is prepared from the asset and liability accounts by including net income with the other equity accounts – using the International Financial Reporting Standards (IFRS).

    The general purpose of producing the trial balance is to ensure that the entries in the ledger are mathematically correct. Have in mind that every run in a simulation will produce a number of entries in the ledger and that they might differ not only in size but also in type depending on the realized states of the company’s operations (see above). We therefore need to be sure that the final financial statements – for every run – are correctly produced, since they will be the basis for all further financial analysis of the company.

    There are of course other sources of errors in book keeping; compensating errors, errors of omission, errors of principle etc. but after many years of use – with millions of runs – we feel confident that the ledger and financial statements are produced correctly. The point is that serious problems need serious models.

    However there are more benefits to be had from simulating the ledger and trial balance:

    1. It increases the models transparency; the trial balance can be printed out and audited. Together with the models extensive reporting and error/consistency control, it is no longer a ‘black box’ to the user.
    2. It makes it easy to plug inn new EBITDA models for other types of industry giving an automated check for consistency with the main balance simulation model.
    3. It is used to ensure correct solving of all implicit equations in the model, the most obvious is of course the interest and bank balance equation (interest depends on the bank balance and the bank balance depends on the interest) but others like translation hedging and limits set by the company’s financial strategy, create large and complicated systems of simultaneous equations.
    4. The trial balance changes from year to year are also used to ensure correct year to year balance transition.

    Financial Analysis, Financial Measures and Valuation

    Given the framework described above financial analysis can be performed and the expected value, variability and probability distributions for the different types of ratios; profitability, liquidity, activity, debt and equity etc. can be calculated and given as graphs. All important measures are calculated at least twice from different starting points to ensure consistency and correct solving of implicit equations.

    The following table shows the reconciliation of Economic Profit, initially calculated from (ROIC-WACC) multiplied with Invested capital:

    The motivation for doing all these consistency controls – in all nearly one hundred – lies in previously experience from Cash Flow/ Valuation models written in Excel. The level of detail is more often than not so low that there is no way to establish if they are right or wrong.

    More interesting than ratios, are the yearly distributions for EBITDA, EBIT, NOPLAT, Profit (loss) for the period, Free cash Flow, Economic profit, ROIC, Wacc, Debt and Equity and Equity value etc. giving a visual picture of the uncertainties and risks the company faces:

    Financial analysis is the conversion of financial data into useful information for decision making. Therefore, virtually any use of financial statements or other financial data for some purpose is financial analysis and is the primary focus of accounting and finance. Financial analysis can be internal (e.g., decision analysis by a company using internal data to understand or improve management and operating results) or external (e.g., comprehensive analysis for the purposes of commercial lending, mergers and acquisition or investment activities). The key is how to analysis available data to make correct decisions.

     

    Input

    As input the model needs parameter values and operational data. The parameter values fall in seven groups:

    1. Parameters describing investors preferences; Market risk premium etc.
    2. Parameters describing the company’s financial strategy; Leverage, Long/Short-term Debt ratio, Expected Foreign/ Domestic Debt Ratio, Economic Depreciation, Maximum Dividend Pay-out Ratio, Translation Hedging Strategy etc.
    3. Parameters describing the economic regime under which it operates: Taxes, Depreciation Scheme etc.
    4. Opening Balance etc.

    Since the model have to produces stochastic forecasts of interest(s) and exchange rates it will need for every currency involved (included lower and upper 5% probability limit):

    1. The Yield curves,
    2. Expected yearly inflation
    3. Depending on the forecast method(s) chosen for the exchange rates; the different currencies expected risk premiums or real exchange rates etc.

    Since there is a large number of parameters they are usually read from an excel template but the program will if necessary ask for missing or report inconsistent values of the parameters.

    The company’s operations are best described through an EBITDA model even if prices, costs and production coefficients and their variability can be read from an excel template. A dedicated EBITDA model will always give the opportunity to give a more detailed and in some cases complex description of the operations, include forecast and demand models, ‘exotic’ taxes, real options strategies etc., etc.

    Output

    S@R has set out to create models that can give answers to both deterministic and stochastic questions the tables will answer most deterministic issues while graphs must be used to answer the risk and uncertainty related questions:

    [TABLE=6]

    1.    In all 27 different reports with more than 70 pages describing operations and the economics of operations.
    2.    In addition the probability distributions for all input and output variables are produced.

    Use

    By linking dedicated EBITDA models to holistic balance simulation, taking into account all important factors describing the company. The basis is a real balance simulation model – not a simple cash flow forecast model.

    Both the deterministic and stochastic balance simulation can be set about in two different alternatives:
    1.    by a using a EBITDA model to describe the companies operations or
    2.    by using coefficients of fabrications (e.g. kg flour pr 1000 bread etc.) as direct input to the balance model.

    The first approach implies setting up a dedicated EBITDA performance and uncertainty, but entails a higher degree of effort from both the company and S@R.

    The use of coefficients of fabrications and their variations is a low effort (cost) alternative, using the internal accounting as basis. This will in many cases give a ‘good enough’ description of the company – its risks and opportunities: The data needed for the company’s economic environment (taxes, interest rates etc.) will be the same in both alternatives.

    In some cases we have used both approaches for the same client, using the last approach for smaller daughter companies with production structures differing from the main companies.
    The second approach can also be considered as an introduction and stepping stone to a more holistic EBITDA model.
    What problems do we solve?

    • The aim regardless of approach is to quantify not only the company’s single and aggregated risks, but also the potential, thus making the company capable to perform detailed planning and of executing earlier and more apt actions against risk factors.
    • This will improve stability to budgets through higher insight in cost side risks and income-side potentials. This is achieved by an active budget-forecast process; the control-adjustment cycle will teach the company to better target realistic budgets – with better stability and increased company value as a result.
    • Experience shows that the mere act of quantifying uncertainty throughout the company – and thru modeling – describe the interactions and their effects on profit, in itself over time reduces total risk and increases profitability.
    • This is most clearly seen when effort is put into correctly evaluating strategies-projects and investments effects on the enterprise. The best way to do this is by comparing and choosing strategies by analyzing the individual strategies risks and potential – and select the alternative that is dominant (stochastic) given the company’s chosen risk-profile.
    • Our aim is therefore to transform enterprise risk management from only safeguarding enterprise value to contribute to the increase and maximization of the firm’s value within the firm’s feasible set of possibilities.

    Strategy@Risk takes advantage of a program language developed and used for financial risk simulation. We have used the program language for over 25years, and developed a series of simulation models for industry, banks and financial institutions.

    The language has as one of its strengths, to be able to solve implicit equations in multiple dimensions. For the specific problems we seek to solve, this is a necessity that provides the necessary degrees of freedom to formulate the approach to problems.

    The Strategy@Risk tools have highly advance properties:

    • Using models written in dedicated financial simulation language (with code and data separated; see The risk of spreadsheet errors).
    • Solving implicit systems of equations giving unique WACC calculated for every period ensuring that “Free Cash Flow” always equals “Economic Profit” value.
    • Programs and models in “windows end-user” style.
    • Extended test for consistency in input, calculations and results.
    • Transparent reporting of assumptions and results.

    References

    Savage, Sam L. “The Flaw of Averages”, Harvard Business Review, November 2002, pp. 20-21

    Mukherjee, Mukherjee (2003). Financial Accounting. New York: Harper Perennial, ISBN 9780070581555.

  • The Uncertainty in Forecasting Airport Pax

    The Uncertainty in Forecasting Airport Pax

    This entry is part 3 of 4 in the series Airports

     

    When planning airport operations, investments both air- and land side or only making next years budget you need to make some forecasts of what traffic you can expect. Now, there are many ways of doing that most of them ending up with a single figure for the monthly or weekly traffic. However we do know that the probability for that figure to be correct is near zero, thus we end up with plans based on assumptions that most likely newer will happen.

    This is why we use Monte Carlo simulation to get a grasp of the uncertainty in our forecast and how this uncertainty develops as we go into the future. The following graph (from real life) shows how the passenger distribution changes as we go from year 2010 (blue) to 2017 (red). The distribution moves outwards showing an expected increase in Pax at the same time it spreads out on the x-axis (Pax) giving a good picture of the increased uncertainty we face.

    Pax-2010_2017This can also be seen from the yearly cumulative probability distributions given below. As we move out into the future the distributions are leaning more and more to the right while still being “anchored” on the left to approximately the same place – showing increased uncertainty in the future Pax forecasts. However our confidence in that the airport will reach at least 40M Pax during the next 5 years is bolstered.

    Pax_DistributionsIf we look at the fan-chart for the Pax forecasts below, the limits of the dark blue region give the lower (25%) and upper (75%) quartiles for the yearly Pax distributions i.e. the region where we expect with 50% probability the actual Pax figures to fall.

    Pax_Uncertainty

    The lower und upper limits give the 5% and 95% percentiles for the yearly Pax distributions i.e. we can expect with 90% probability that the actual Pax figures will fall somewhere inside these three regions.

    As shown the uncertainty about the future yearly Pax figures is quite high. With this as the backcloth for airport planning it is evident that the stochastic nature of the Pax forecasts has to be taken into account when investment decisions (under uncertainty) are to be made. (ref) Since the airport value will relay heavily on these forecasts it is also evident that this value will be stochastic and that methods from decision making under uncertainty have to be used for possible M&R.

    Major Airport Operation Disruptions

    Delays – the time lapse which occurs when a planned event does not happen at the planned time – are pretty common at most airports Eurocontrol  estimates it on average to approx 13 min on departure for 45%  of the flights and approx 12 min for arrivals in 42% of the flights (Guest, 2007). Nevertheless the airport costs of such delays are small; it can even give an increase in revenue (Cook, Tanner, & Anderson, 2004).

    We have lately in Europe experienced major disruptions in airport operations thru closing of airspace due to volcanic ash. Closed airspace give a direct effect on airport revenue and a higher effect the closer it is to an airport. Volcanic eruptions in some regions might be considered as Black Swan events to an airport, but there are a large number of volcanoes that might cause closing of airspace for shorter or longer time. The Smithsonian Global Volcanism Program lists more than 540 volcanoes with previous documented eruption.

    As there is little data for events like this it is difficult to include the probable effects of closed airspace due to volcanic eruptions in the simulation. However, the data includes effects of the 9/11 terrorist attack and the left tails of the yearly Pax distributions will be influenced by this.

    References

    Guest, Tim. (2007, September). A Matter of time: air traffic delay in Europe. , EUROCONTROL Trends in Air Traffic I, 2.

    Cook, A., Tanner, G., & Anderson, S. (2004). Evaluating the true cost to airlines of one minute of airborne or ground delay: final report. [University of Westminster]. Retrieved from, www.eurocontrol.int/prc/gallery/content/public/Docs/cost_of_delay.pdf

  • A short presentation of S@R

    A short presentation of S@R

    This entry is part 1 of 4 in the series A short presentation of S@R

     

    My general view would be that you should not take your intuitions at face value; overconfidence is a powerful source of illusions. Daniel Kahneman (“Strategic decisions: when,” 2010)

    Most companies have some sort of model describing the company’s operations. They are mostly used for budgeting, but in some cases also for forecasting cash flow and other important performance measures. Almost all are deterministic models based on expected or average values of input data; sales, cost, interest and currency rates etc. We know however that forecasts based on average values are on average wrong. In addition deterministic models will miss the important uncertainty dimension that gives both the different risks facing the company and the opportunities they produce.

    S@R has set out to create models (See Pdf: Short presentation of S@R) that can give answers to both deterministic and stochastic questions, by linking dedicated EBITDA models to holistic balance simulation taking into account all important factors describing the company. The basis is a real balance simulation model – not a simple cash flow forecast model.

    Generic Simulation_model

    Both the deterministic and stochastic balance simulation can be set about in two different alternatives:

    1. by a using a EBITDA model to describe the companies operations or,
    2. by using coefficients of fabrications  as direct input to the balance model.

    The first approach implies setting up a dedicated ebitda subroutine to the balance model. This will give detailed answers to a broad range of questions about operational performance and uncertainty, but entails a higher degree of effort from both the company and S@R.

    The use of coefficients of fabrications and their variations is a low effort (cost) alternative, using the internal accounting as basis. This will in many cases give a ‘good enough’ description of the company – its risks and opportunities: The data needed for the company’s economic environment (taxes, interest rates etc.) will be the same in both alternatives.

    EBITDA_model

    In some cases we have used both approaches for the same client, using the last approach for smaller daughter companies with production structures differing from the main companies.
    The second approach can also be considered as an introduction and stepping stone to a more holistic EBITDA model.

    What problems do we solve?

    • The aim regardless of approach is to quantify not only the company’s single and aggregated risks, but also the potential, thus making the company capable to perform detailed planning and of executing earlier and more apt actions against risk factors.
    • This will improve stability to budgets through higher insight in cost side risks and income-side potentials. This is achieved by an active budget-forecast process; the control-adjustment cycle will teach the company to better target realistic budgets – with better stability and increased company value as a result.
    • Experience shows that the mere act of quantifying uncertainty throughout the company – and thru modelling – describe the interactions and their effects on profit, in itself over time reduces total risk and increases profitability.
    • This is most clearly seen when effort is put into correctly evaluating strategies-projects and investments effects on the enterprise. The best way to do this is by comparing and choosing strategies by analysing the individual strategies risks and potential – and select the alternative that is dominant (stochastic) given the company’s chosen risk-profile.
    • Our aim is therefore to transform enterprise risk management from only safeguarding enterprise value to contribute to the increase and maximization of the firm’s value within the firm’s feasible set of possibilities.

    References

    Strategic decisions: when can you trust your gut?. (2010). McKinsey Quarterly, (March)

  • The Value of Information

    The Value of Information

    This entry is part 4 of 4 in the series A short presentation of S@R

     

    Enterprise risk management (ERM) only has value to those who know that the future is uncertain

    Businesses have three key needs:

    First, they need to have a product or service that people will buy. They need revenues.

    Second, they need to have the ability to provide that product or service at a cost less than what their customers will pay. They need profits. Once they have revenues and profits, their business is a valuable asset.

    So third, they need to have a system to avoid losing that asset because of unforeseen adverse experience. They need risk management.

    The top CFO concern is the firm’s ability to forecast results and the first stepping-stone in the process of forecasting results is to forecast demand – and this is where ERM starts.

    The main risk any firm faces is the variability (uncertainty) of demand. Since all production activities like procurement of raw materials, sizing of work force, investment in machinery etc. is based on expected demand the task of forecasting future demand is crucial. It is of course difficult and in most cases not possible to perfectly forecast demand, but it is always possible to make forecasts that give better results than mere educated guesses.

    We will attempt in the following to show the value of making good forecasts by estimating the daily probability distribution for demand. We will do this using a very simple model, assuming that:

    1. Daily demand is normal distributed with expected sales of 100 units and a standard deviation of 12 units,
    2. the product can not be stocked,
    3. it sells at $4 pr unit, has a variable production cost of $2 and a fixed production cost of $50.

    Now we need to forecast the daily sales. If we had perfect information about the demand, we would have a probability distribution for daily profit as given by the red histogram and line in the graphs below.

    • One form of forecast (average) is the educated guess using the average daily sales (blue histogram). As we can see from the graphs, this forecast method gives a large downside (too high production) and no upside (too low production).
    • A better method (limited information) would have been to forecast demand by its relation to some other observable variable. Let us assume that we have a forecast method that gives us a near perfect forecast in 50% of the cases and a probability distribution for the rest that is normal distributed with expected sales as for demand, but with a standard deviation of six units (green histogram).

    Profit-histogramWith the knowledge we have from (selecting strategy) we clearly se that the last forecast strategy is stochastic dominant to the use of average demand as forecast.

    ProfitSo, what is the value to the company of more informed forecasts than the mere use of expected sales? The graph below gives the distribution for the differences in profit (percentage) using the two methods. Over time, the second method  will give on average an 8% higher profit than just using the average demand as forecast.

    Diff-in-profitHowever, there is still another seven to eight percent room for further improvement in the forecasting procedure.

    If the company could be reasonable sure of the existence of a better forecast model than using the average, it would be a good strategy to put money into a betterment. In fact it could use up to 8% of all future profit if it knew that a method as good as or better than our second method existed.