Warning: define(): Argument #3 ($case_insensitive) is ignored since declaration of case-insensitive constants is no longer supported in /home/u742613510/domains/strategy-at-risk.com/public_html/wp-content/plugins/wpmathpub/wpmathpub.php on line 65
P&L simulation – Strategy @ Risk

Category: P&L simulation

  • Working Capital Strategy Revisited

    Working Capital Strategy Revisited

    This entry is part 3 of 3 in the series Working Capital

    Introduction

    To link the posts on working capital and inventory management, we will look at a company with a complicated market structure, having sales and production in a large number of countries and with a wide variety of product lines. Added to this is a marked seasonality with high sales in the years two first quarters and much lower sales in the years two last quarters ((All data is from public records)).

    All this puts a strain on the organizations production and distribution systems and of course on working capital.

    Looking at the development of net working capital ((Net working capital = Total current assets – Total current liabilities)) relative to net sales it seems as the company in the later years have curbed the initial net working capital growth:

    Just by inspecting the graph however it is difficult to determine if the company’s working capital management is good or lacking in performance. We therefore need to look in more detail at the working capital elements  and compare them with industry ‘averages’ ((By their Standard Industrial Classification (SIC) )).

    The industry averages can be found from the annual “REL Consultancy /CFO Working Capital Survey” that made its debut in 1997 in the CFO Magazine. We can thus use the survey’s findings to assess the company’s working capital performance ((Katz, M.K. (2010). Working it out: The 2010 Working Capital Scorecard. CFO Magazine, June, Retrieved from http://www.cfo.com/article.cfm/14499542
    Also see: https://www.strategy-at-risk.com/2010/10/18/working-capital-strategy-2/)).

    The company’s working capital management

    Looking at the different elements of the company’s working capital, we find that:

    I.    Day’s sales outstanding (DSO) is on average 70 days compared with REL’s reported industry median of 56 days.

    II.    Day’s payables outstanding (DPO) is the difference small and in the right direction, 25 days against the industry median of 23 days.

    III.    Day’s inventory outstanding (DIO) on average 138 days compared with the industry median of 23 days, and this is where the problem lies.

    IV.    The company’s days of working capital (DWC = DSO+DIO-DPO) (( Days of working capital (DWC) is essentially the same as the Cash Conversion Cycle (CCC). Se endnote for more.)) have on average according to the above, been 183 days over the last five years compared to REL’s  median DWC of 72 days in for comparable companies.

    This company thus has more than 2.5 times ‘larger’ working capital than its industry average.

    As levers of financial performance, none is more important than working capital. The viability of every business activity rests on daily changes in receivables, inventory, and payables.

    The goal of the company is to minimize its ‘Days of Working Capital’ (DWC) or which is equivalent the ‘Cash Conversion Cycle’ (CCC), and thereby reduce the amount of outstanding working capital. This requires examining each component of DWC discussed above and taking actions to improve each element. To the extent this can be achieved without increasing costs or depressing sales, they should be carried out:

    1.    A decrease in ‘Day’s sales outstanding’ (DSO) or in ‘Day’s inventory outstanding’ (DIO) will represent an improvement, and an increase will indicate deterioration,

    2.    An increase in ‘Day’s payables outstanding’ (DPO) will represent an improvement and an decrease will indicate deterioration,

    3.    Reducing ‘Days of Working Capital’ (DWC or CCC) will represent an improvement, whereas an increasing (DWC or CCC) will represent deterioration.

    Day’s sales- and payables outstanding

    Many companies think in terms of “collecting as fast as possible, and paying as slowly as permissible.” This strategy, however, may not be the wisest.
    At the same time the company is attempting to integrate with its customers – and realize the related benefits – so are its suppliers. A “pay slow” approach may not optimize either the accounts or inventory, and it is likely to interfere with good supplier relationships.

    Supply-chain finance

    One way around this might be ‘Supply Chain Finance ‘(SCF) or reverse factoring ((“The reverse factoring method, still rare, is similar to the factoring insofar as it involves three actors: the ordering party, the supplier and the factor. Just as basic factoring, the aim of the process is to finance the supplier’s receivables by a financier (the factor), so the supplier can cash in the money for what he sold immediately (minus an interest the factor deducts to finance the advance of money).” http://en.wikipedia.org/wiki/Reverse_factoring)). Properly done, it can enable a company to leverage credit to increase the efficiency of its working capital and at the same time enhance its relationships with suppliers. The company can extend payment terms and the supplier receives advance payments discounted at rates considerably lower than their normal funding margins. The lender (factor), in turn, gets the benefit of a margin higher than the risk profile commands.

    This is thus a form of receivables financing using solutions that provide working capital to suppliers and/or buyers within any part of a supply chain and that is typically arranged on the credit risk of a large corporate within that supply chain.

    Day’s inventory outstanding (DIO)

    DIO is a financial and operational measure, which expresses the value of inventory in days of cost of goods sold. It represents how much inventory an organization has tied up across its supply chain or more simply – how long it takes to convert inventory into sales. This measure can be aggregated for all inventories or broken down into days of raw material, work in progress and finished goods. This measure should normally be produced monthly.

    By using the industry typical ‘days inventory outstanding’ (DIO) we can calculate the potential reduction in the company’s inventory – if the company should succeed in being as good in inventory management as its peers.

    If the industry’s typical DIO value is applicable, then there should be a potential for a 60 % reduction in the company’s inventory.

    Even if this overstates the true potential it is obvious that a fairly large reduction is possible since 98% of the 1000 companies in the REL report have a value for DIO less than 138 days:

    Adding to the company’s concern should also be the fact that the inventories seems to increase at a faster pace than net sales:

    Inventory Management

    Successfully addressing the challenge of reducing inventory requires an understanding of why inventory is held and where it builds in the system.
    Achieving this goal requires a focus on inventory improvement efforts on four core areas:

    1. demand management – information integration with both suppliers and customers,
    2. inventory optimization – using statistical/finance tools to monitor and set inventory levels,
    3. transportation and logistics – lead time length and variability and
    4. supply chain planning and execution – coordinating planning throughout the chain from inbound to internal processing to outbound.

    We believe that the best way of attacking this problems is to produce a simulation model that can ‘mimic’ the sales – distribution – production chain in necessary detail to study different strategies and the probabilities of stock-out and possible stock-out costs compared with the costs of doing the different products (items).

    The costs of never experience a stock-out can be excessively high – the global average of retail out-of-stocks is 8.3% ((Gruen, Thomas W. and Daniel Corsten (2008), A Comprehensive Guide to Retail Out-of-Stock Reduction in the Fast-Moving Consumer Goods Industry, Grocery Manufacturers of America, Washington, DC, ISBN: 978-3-905613-04-9)) .

    By basing the model on activity-based costing, it can estimate the cost and revenue elements of the product lines thus either identify and/or eliminate those products and services that are unprofitable or ineffective. The scope is to release more working capital by lowering values of inventories and streamlining the end to end value chain

    To do this we have to make improved forecasts of sales and a breakdown of risk and economic values both geographically and for product groups to find out were capital should be employed coming years  (product – geography) both for M&A and organic growth investments.

    A model like the one we propose needs detailed monthly data usually found in the internal accounts. This data will be used to statistically determine the relationships between the cost variables describing the different value chains. In addition will overhead from different company levels (geographical) have to be distributed both on products and on the distribution chains.

    Endnote

    Days Sales Outstanding (DSO) = AR/(total revenue/365)

    Year-end trade receivables net of allowance for doubtful accounts, plus financial receivables, divided by one day of average revenue.

    Days Inventory Outstanding (DIO) = Inventory/(total revenue/365)

    Year-end inventory plus LIFO reserve divided by one day of average revenue.

    Days Payables Outstanding (DPO) = AP/(total revenue/365)

    Year-end trade payables divided by one day of average revenue.

    Days Working Capital (DWC): (AR + inventory – AP)/(total revenue/365)

    Where:
    AR = Average accounts receivable
    AP = Average accounts payable
    Inventory = Average inventory + Work in progress

    Year-end net working capital (trade receivables plus inventory, minus AP) divided by one day of average revenue. (DWC = DSO+DIO-DPO).

    For the comparable industry we find an average of: DWC=56+39-23=72 days

    Days of working capital (DWC) is essentially the same as the Cash Conversion Cycle (CCC) except that the CCC uses the Cost of Goods Sold (COGS) when calculating both the Days Inventory Outstanding (DIO) and the Days Payables Outstanding (DPO) whereas DWC uses sales (Total Revenue) for all calculations:

    CCC= Days in period x {(Average  inventory/COGS) + (Average receivables / Revenue) – (Average payables/[COGS + Change in Inventory)]

    Where:
    COGS= Production Cost – Change in Inventory

    Footnotes

     

  • Uncertainty modeling

    Uncertainty modeling

    This entry is part 2 of 3 in the series What We Do

    Prediction is very difficult, especially about the future.
    Niels Bohr. Danish physicist (1885 – 1962)

    Strategy @ Risks models provide the possibility to study risk and uncertainties related to operational activities;  cost, prices, suppliers,  markets, sales channels etc. financial issues like; interest rates risk, exchange rates risks, translation risk , taxes etc., strategic issues like investments in new or existing activities, valuation and M&As’ etc and for a wide range of budgeting purposes.

    All economic activities have an inherent volatility that is an integrated part of its operations. This means that whatever you do some uncertainty will always remain.

    The aim is to estimate the economic impact that such critical uncertainty may have on corporate earnings at risk. This will add a third dimension – probability – to all forecasts, give new insight: the ability to deal with uncertainties in an informed way and thus benefits above ordinary spread-sheet exercises.

    The results from these analyzes can be presented in form of B/S and P&L looking at the coming one to five (short term) or five to fifteen years (long term); showing the impacts to e.g. equity value, company value, operating income etc. With the purpose of:

    • Improve predictability in operating earnings and its’ expected volatility
    • Improve budgeting processes, predicting budget deviations and its’ probabilities
    • Evaluate alternative strategic investment options at risk
    • Identify and benchmark investment portfolios and their uncertainty
    • Identify and benchmark individual business units’ risk profiles
    • Evaluate equity values and enterprise values and their uncertainty in M&A processes, etc.

    Methods

    To be able to add uncertainty to financial models, we also have to add more complexity. This complexity is inevitable, but in our case, it is desirable and it will be well managed inside our models.

    People say they want models that are simple, but what they really want is models with the necessary features – that are easy to use. If something is complex but well designed, it will be easy to use – and this holds for our models.

    Most companies have some sort of model describing the company’s operations. They are mostly used for budgeting, but in some cases also for forecasting cash flow and other important performance measures. Almost all are deterministic models based on expected or average values of input data; sales, cost, interest and currency rates etc.

    We know however that forecasts based on average values are on average wrong. In addition will deterministic models miss the important uncertainty dimension that gives both the different risks facing the company and the opportunities they bring forth.

    S@R has set out to create models that can give answers to both deterministic and stochastic questions, by linking dedicated Ebitda models to holistic balance simulation taking into account all important factors describing the company. The basis is a real balance simulation model – not a simple cash flow forecast model.

    Both the deterministic and stochastic balance simulation can be set about in two different alternatives:

    1. by a using a EBITDA model to describe the companies operations or
    2. by using coefficients of fabrications (e.g. kg flour pr 1000 bread etc.) as direct input to the balance model – the ‘short cut’ method.

    The first approach implies setting up a dedicated Ebitda subroutine to the balance model. This will give detailed answers to a broad range of questions about markets, capacity driven investments, operational performance and uncertainty, but entails a higher degree of effort from both the company and S@R. This is a tool for long term planning and strategy development.

    The second (‘the short cut’) uses coefficients of fabrications and their variations, and is a low effort (cost) alternative, usually using the internal accounting as basis. This will in many cases give a ‘good enough’ description of the company – its risks and opportunities. It can be based on existing investment and market plans.  The data needed for the company’s economic environment (taxes, interest rates etc) will be the same in both alternatives:

    The ‘short cut’ approach is especially suited for quick appraisals of M&A cases where time and data is limited and where one wishes to limit efforts in an initial stage. Later the data and assumptions can be augmented to much more sophisticated analysis within the same ‘short cut’ framework. In this way analysis can be successively built in the direction the previous studies suggested.

    This also makes it a good tool for short-term (3-5 years) analysis and even for budget assessment. Since it will use a limited number of variables – usually less than twenty – describing the operations, it is easy to maintain and operate. The variables describing financial strategy and the economic environment come in addition, but will be easy to obtain.

    Used in budgeting it will give the opportunity to evaluate budget targets, their probable deviation from expected result and the probable upside or down side given the budget target (Upside/downside ratio).

    Done this way analysis can be run for subsidiaries across countries translating the P&L and Balance to any currency for benchmarking, investment appraisals, risk and opportunity assessments etc. The final uncertainty distributions can then be “aggregated’ to show global risk for the mother company.

    An interesting feature is the models ability to start simulations with an empty opening balance. This can be used to assess divisions that do not have an independent balance since the model will call for equity/debt etc. based on a target ratio, according to the simulated production and sales and the necessary investments. Questions about further investment in divisions or product lines can be studied this way.

    Since all runs (500 to 1000) in the simulation produces a complete P&L and Balance the uncertainty curve (distribution) for any financial metric like ‘Yearly result’, ‘free cash flow’, economic profit’, ‘equity value’, ‘IRR’ or’ translation gain/loss’ etc. can be produced.

    In some cases we have used both approaches for the same client, using the last approach for smaller daughter companies with production structures differing from the main companies.
    The second approach can also be considered as an introduction and stepping stone to a more holistic Ebitda model.

    Time and effort

    The work load for the client is usually limited to a small team of people ( 1 to 3 persons) acting as project leaders and principal contacts, assuring that all necessary information, describing value and risks for the clients’ operations can be collected as basis for modeling and calculations. However the type of data will have to be agreed upon depending on the scope of analysis.

    Very often will key people from the controller group be adequate for this work and if they don’t have the direct knowledge they usually know who to ask. The work for this team, depending on the scope and choice of method (see above) can vary in effective time from a few days to a couple of weeks, but this can be stretched from three to four weeks to the same number of months.

    For S&R the time frame will depend on the availability of key personnel from the client and the availability of data. For the second alternative it can take from one to three weeks of normal work to three to six months for the first alternative for more complex models. The total time will also depend on the number of analysis that needs to be run and the type of reports that has to be delivered.

    S@R_ValueSim

    Selecting strategy

    Models like this are excellent for selection and assessment of strategies. Since we can find the probability distribution for equity value, changes in this brought by different strategies will form a basis for selection or adjustment of current strategy. Models including real option strategies are a natural extension of these simulation models:

    If there is a strategy with a curve to the right and under all other feasible strategies this will be the stochastic dominant one. If the curves crosses further calculations needs to be done before a stochastic dominant or preferable strategy can be found:

    Types of problems we aim to address:

    The effects of uncertainties on the P&L and Balance and the effects of the Boards strategies (market, hedging etc.) on future P&L and Balance sheets evaluating:

    • Market position and potential for growth
    • Effects of tax and capital cost
    • Strategies
    • Business units, country units or product lines –  capital allocation – compare risk, opportunity and expected profitability
    • Valuations, capital cost and debt requirements, individually and effect on company
    • The future cash-flow volatility of company and the individual BU’s
    • Investments, M&A actions, their individual value, necessary commitments and impact on company
    • Etc.

    The aim regardless of approach is to quantify not only the company’s single and aggregated risks, but also the potential, thus making the company capable to perform detailed planning and of executing earlier and more apt actions against uncertain factors.

    Used in budgeting, this will improve budget stability through higher insight in cost side risks and income-side potentials. This is achieved by an active budget-forecast process; the control-adjustment cycle will teach the company to better target realistic budgets – with better stability and increased company value as a result.

    This is most clearly seen when effort is put into correctly evaluating strategies-projects and investments effects on the enterprise. The best way to do this is by comparing and Choosing strategies by analyzing the individual strategies risks and potential – and select the alternative that is dominant (stochastic) given the company’s chosen risk-profile.

    A severe depression like that of 1920-1921 is outside the range of probability. –The Harvard Economic Society, 16 November 1929

  • Stochastic Balance Simulation

    Stochastic Balance Simulation

    This entry is part 1 of 6 in the series Balance simulation

    Introduction

    Most companies have some sort of model describing the company’s operations. They are mostly used for budgeting, but in some cases also for forecasting cash flow and other important performance measures. Almost all are deterministic models based on a single values forecasts; the expected or average value of the input data; sales, cost, interest and currency rates etc. We know however that forecasts based on average values are on average wrong (Savage, 2002).  In addition deterministic models will miss the important dimension of uncertainty – that gives both the different risks facing the company and the opportunities they produce.

    In contrast, a stochastic model will be calculated a large number of times with different values for the input variable drawn from all possible values of the individual variables. Each run will then give a probable realization of future cash flow or of the company’s equity value etc. With thousands of runs we can plot the relative frequencies of the calculated values:

    and thus, we have succeeded in generating the probability distribution for the company’s equity value. In insurance this type of technique is often called Dynamic Financial Analysis (DFA) which actually is a fitting name.

    The Balance Simulation Model

    The main tool in the S&R toolbox is the balance model. The starting point is the company’s balance, which is treated as the simulations opening balance. In the case of a greenfield project – new factories, power plants, airports, etc. built from scratch – the opening balance is empty.

    The successive balances are then built from the Profit & Loss, by simulation of the company’s operation thru an EBITDA model mimicking the real life operations. Investments can be driven by demand (capacity calculations) or by investment programs giving the necessary or planned production capacity. The model will throughout the simulation raise debt (short and/or long term) or equity (domestic or foreign) according to the financial strategy set out by the company and the difference between cash outflow and inflow adjusted for the minimum cash level.

    Since this is a dynamic model, it will raise equity when losses occur and/or the maximum Debt/equity ratio has been exceeded. On the other hand it will repay loans, pay dividend, repurchase shares or purchase excess marketable securities (cash above the need for the operations) – all in line with the board’s shareholder strategy.

    The ledger and Double-entry Bookkeeping

    The activity described in the EBITDA model; investments, purchase of raw materials, production, payment of wages, income from sales, payment of special taxes on investments etc. is registered as transactions in the ledger, following a standard chart of accounts with double-entry bookkeeping. In a similar fashion are all financial transactions; loans repayments, cash, taxes paid and deferred, Agio and Disagio, etc. posted in the ledger. Currently, approximately 400 accounts are in use.

    The Trial Balance and the Financial Statements

    The trial balance (Post-Closing) is compiled and checked for balance between total debts and total credits. The income statement is then prepared using revenue and expense accounts from the trial balance and the balance sheet is prepared from the asset and liability accounts by including net income with the other equity accounts – using the International Financial Reporting Standards (IFRS).

    The general purpose of producing the trial balance is to ensure that the entries in the ledger are mathematically correct. Have in mind that every run in a simulation will produce a number of entries in the ledger and that they might differ not only in size but also in type depending on the realized states of the company’s operations (see above). We therefore need to be sure that the final financial statements – for every run – are correctly produced, since they will be the basis for all further financial analysis of the company.

    There are of course other sources of errors in book keeping; compensating errors, errors of omission, errors of principle etc. but after many years of use – with millions of runs – we feel confident that the ledger and financial statements are produced correctly. The point is that serious problems need serious models.

    However there are more benefits to be had from simulating the ledger and trial balance:

    1. It increases the models transparency; the trial balance can be printed out and audited. Together with the models extensive reporting and error/consistency control, it is no longer a ‘black box’ to the user.
    2. It makes it easy to plug inn new EBITDA models for other types of industry giving an automated check for consistency with the main balance simulation model.
    3. It is used to ensure correct solving of all implicit equations in the model, the most obvious is of course the interest and bank balance equation (interest depends on the bank balance and the bank balance depends on the interest) but others like translation hedging and limits set by the company’s financial strategy, create large and complicated systems of simultaneous equations.
    4. The trial balance changes from year to year are also used to ensure correct year to year balance transition.

    Financial Analysis, Financial Measures and Valuation

    Given the framework described above financial analysis can be performed and the expected value, variability and probability distributions for the different types of ratios; profitability, liquidity, activity, debt and equity etc. can be calculated and given as graphs. All important measures are calculated at least twice from different starting points to ensure consistency and correct solving of implicit equations.

    The following table shows the reconciliation of Economic Profit, initially calculated from (ROIC-WACC) multiplied with Invested capital:

    The motivation for doing all these consistency controls – in all nearly one hundred – lies in previously experience from Cash Flow/ Valuation models written in Excel. The level of detail is more often than not so low that there is no way to establish if they are right or wrong.

    More interesting than ratios, are the yearly distributions for EBITDA, EBIT, NOPLAT, Profit (loss) for the period, Free cash Flow, Economic profit, ROIC, Wacc, Debt and Equity and Equity value etc. giving a visual picture of the uncertainties and risks the company faces:

    Financial analysis is the conversion of financial data into useful information for decision making. Therefore, virtually any use of financial statements or other financial data for some purpose is financial analysis and is the primary focus of accounting and finance. Financial analysis can be internal (e.g., decision analysis by a company using internal data to understand or improve management and operating results) or external (e.g., comprehensive analysis for the purposes of commercial lending, mergers and acquisition or investment activities). The key is how to analysis available data to make correct decisions.

     

    Input

    As input the model needs parameter values and operational data. The parameter values fall in seven groups:

    1. Parameters describing investors preferences; Market risk premium etc.
    2. Parameters describing the company’s financial strategy; Leverage, Long/Short-term Debt ratio, Expected Foreign/ Domestic Debt Ratio, Economic Depreciation, Maximum Dividend Pay-out Ratio, Translation Hedging Strategy etc.
    3. Parameters describing the economic regime under which it operates: Taxes, Depreciation Scheme etc.
    4. Opening Balance etc.

    Since the model have to produces stochastic forecasts of interest(s) and exchange rates it will need for every currency involved (included lower and upper 5% probability limit):

    1. The Yield curves,
    2. Expected yearly inflation
    3. Depending on the forecast method(s) chosen for the exchange rates; the different currencies expected risk premiums or real exchange rates etc.

    Since there is a large number of parameters they are usually read from an excel template but the program will if necessary ask for missing or report inconsistent values of the parameters.

    The company’s operations are best described through an EBITDA model even if prices, costs and production coefficients and their variability can be read from an excel template. A dedicated EBITDA model will always give the opportunity to give a more detailed and in some cases complex description of the operations, include forecast and demand models, ‘exotic’ taxes, real options strategies etc., etc.

    Output

    S@R has set out to create models that can give answers to both deterministic and stochastic questions the tables will answer most deterministic issues while graphs must be used to answer the risk and uncertainty related questions:

    [TABLE=6]

    1.    In all 27 different reports with more than 70 pages describing operations and the economics of operations.
    2.    In addition the probability distributions for all input and output variables are produced.

    Use

    By linking dedicated EBITDA models to holistic balance simulation, taking into account all important factors describing the company. The basis is a real balance simulation model – not a simple cash flow forecast model.

    Both the deterministic and stochastic balance simulation can be set about in two different alternatives:
    1.    by a using a EBITDA model to describe the companies operations or
    2.    by using coefficients of fabrications (e.g. kg flour pr 1000 bread etc.) as direct input to the balance model.

    The first approach implies setting up a dedicated EBITDA performance and uncertainty, but entails a higher degree of effort from both the company and S@R.

    The use of coefficients of fabrications and their variations is a low effort (cost) alternative, using the internal accounting as basis. This will in many cases give a ‘good enough’ description of the company – its risks and opportunities: The data needed for the company’s economic environment (taxes, interest rates etc.) will be the same in both alternatives.

    In some cases we have used both approaches for the same client, using the last approach for smaller daughter companies with production structures differing from the main companies.
    The second approach can also be considered as an introduction and stepping stone to a more holistic EBITDA model.
    What problems do we solve?

    • The aim regardless of approach is to quantify not only the company’s single and aggregated risks, but also the potential, thus making the company capable to perform detailed planning and of executing earlier and more apt actions against risk factors.
    • This will improve stability to budgets through higher insight in cost side risks and income-side potentials. This is achieved by an active budget-forecast process; the control-adjustment cycle will teach the company to better target realistic budgets – with better stability and increased company value as a result.
    • Experience shows that the mere act of quantifying uncertainty throughout the company – and thru modeling – describe the interactions and their effects on profit, in itself over time reduces total risk and increases profitability.
    • This is most clearly seen when effort is put into correctly evaluating strategies-projects and investments effects on the enterprise. The best way to do this is by comparing and choosing strategies by analyzing the individual strategies risks and potential – and select the alternative that is dominant (stochastic) given the company’s chosen risk-profile.
    • Our aim is therefore to transform enterprise risk management from only safeguarding enterprise value to contribute to the increase and maximization of the firm’s value within the firm’s feasible set of possibilities.

    Strategy@Risk takes advantage of a program language developed and used for financial risk simulation. We have used the program language for over 25years, and developed a series of simulation models for industry, banks and financial institutions.

    The language has as one of its strengths, to be able to solve implicit equations in multiple dimensions. For the specific problems we seek to solve, this is a necessity that provides the necessary degrees of freedom to formulate the approach to problems.

    The Strategy@Risk tools have highly advance properties:

    • Using models written in dedicated financial simulation language (with code and data separated; see The risk of spreadsheet errors).
    • Solving implicit systems of equations giving unique WACC calculated for every period ensuring that “Free Cash Flow” always equals “Economic Profit” value.
    • Programs and models in “windows end-user” style.
    • Extended test for consistency in input, calculations and results.
    • Transparent reporting of assumptions and results.

    References

    Savage, Sam L. “The Flaw of Averages”, Harvard Business Review, November 2002, pp. 20-21

    Mukherjee, Mukherjee (2003). Financial Accounting. New York: Harper Perennial, ISBN 9780070581555.

  • The Case of Enterprise Risk Management

    The Case of Enterprise Risk Management

    This entry is part 2 of 4 in the series A short presentation of S@R

     

    The underlying premise of enterprise risk management is that every entity exists to provide value for its stakeholders. All entities face uncertainty and the challenge for management is to determine how much uncertainty to accept as it strives to grow stakeholder value. Uncertainty presents both risk and opportunity, with the potential to erode or enhance value. Enterprise risk management enables management to effectively deal with uncertainty and associated risk and opportunity, enhancing the capacity to build value. (COSO, 2004)

    The evils of a single point estimate

    Enterprise risk management is a process, effected by an entity’s board of directors, management and other personnel, applied in strategy setting and across the enterprise, designed to identify potential events that may affect the entity, and manage risk to be within its risk appetite, to provide reasonable assurance regarding the achievement of entity objectives. (COSO, 2004)

    Traditionally, when estimating costs, project value, equity value or budgeting, one number is generated – a single point estimate. There are many problems with this approach.  In budget work this point is too often given as the best the management can expect, but in some cases budgets are set artificially low generating bonuses for later performance beyond budget. The following graph depicts the first case.

    Budget_actual_expected

    Here, we have based on the production and market structure and on the managements assumptions of the variability of all relevant input and output variables simulated the probability distribution for next years EBITDA. The graph gives the budgeted value, the actual result and the expected value. Both budget and actual value are above expected value, but the budgeted value was far too high, giving with more than 80% probability a realized EBITDA lower than budget. In this case the board will be mislead with regard to the company’ ability to earn money and all subsequent decisions made based on the budget EBITDA can endanger the company.

    The organization’s ERM system should function to bring to the board’s attention the most significant risks affecting entity objectives and allow the board to understand and evaluate how these risks may be correlated, the manner in which they may affect the enterprise, and management’s mitigation or response strategies. (COSO, 2009)

    It would have been much more preferable to the board to be given both the budget value and the accompanying probability distribution allowing it to make independent judgment about the possible size of the next years EBITDA. Only then will the board – both from the shape of the distribution, its localization and the point estimate of budget EBITDA – be able to assess the risk and opportunity facing the company.

    Will point estimates cancel out errors?

    In the following we measure the deviation of the actual result from both from the budget value and from the expected value. The blue dots represent daughter companies located in different countries. For each company we have the deviation (in percent) of the budgeted EBITDA (bottom axis) and the expected value (left axis) from the actual EBITDA observed 1 ½ year later.

    If the deviation for a company falls in the upper right quadrant the deviation are positive for both budget and expected value – and the company is overachieving.

    If the deviation falls in the lower left quadrant the deviation are negative for both budget and expected value – and the company is underachieving.

    If the deviation falls in the upper left quadrant the deviation are negative for budget and positive for expected value – the company is overachieving but has had a to high budget.

    With left skewed EBITDA distributions there should not be any observations in the lower right quadrant that will only happen when the distributions is skewed to the right – and then there will not be any observations in the upper left quadrant.

    The graph below shows that two companies have seriously underperformed and that the budget process did not catch the risk they were facing.  The rest of the companies have done very well, some however have seriously underestimated opportunities manifested by the actual result. From an economic point of view, the mother company would of course have preferred all companies (blue dots) above the x-axis, but due to the stochastic nature of the EBITDA it have to accept that some always will fall below.  Risk wise, it would have preferred the companies to fall to the right of the y-axis but will due to budget uncertainties have to accept that some always will fall to the left. However, large deviations both below the x-axis and to the left of the y-axis add to the company risk.

    Budget_actual_expected#1

    A situation like the one given in the graph below is much to be preferred from the board’s point of view.

    Budget_actual_expected#2

    The graphs above, taken from real life – shows that budgeting errors will not be canceled out even across similar daughter companies. Consolidating the companies will give the mother company a left skewed EBITDA distribution. They also show that you need to be prepared for deviations both positive and negative – you need a plan. So how do you get a plan? You make a simulation model! (See Pdf: Short-presentation-of-S@R#2)

    Simulation

    The Latin verb simulare means to “to make like”, “to create an exact representation” or imitate. The purpose of a simulation model is to imitate the company and is environment, so that its functioning can be studied. The model can be a test bed for assumptions and decisions about the company. By creating a representation of the company a modeler can perform experiments that are impossible or prohibitively expensive in the real world. (Sterman, 1991)

    There are many different simulation techniques, including stochastic modeling, system dynamics, discrete simulation, etc. Despite the differences among them, all simulation techniques share a common approach to modeling.

    Key issues in simulation include acquisition of valid source information about the company, selection of key characteristics and behaviors, the use of simplifying approximations and assumptions within the simulation, and fidelity and validity of the simulation outcomes.

    Optimization models are prescriptive, but simulation models are descriptive. A simulation model does not calculate what should be done to reach a particular goal, but clarifies what could happen in a given situation. The purpose of simulations may be foresight (predicting how systems might behave in the future under assumed conditions) or policy design (designing new decision-making strategies or organizational structures and evaluating their effects on the behavior of the system). In other words, simulation models are “what if” tools. Often is such “what if” information more important than knowledge of the optimal decision.

    However, even with simulation models it is possible to mismanage risk by (Stulz, 2009):

    • Over-reliance on historical data
    • Using too narrow risk metrics , such as value at risk—probably the single most important measure in financial services—have underestimated risks
    • Overlooking knowable risks
    • Overlooking concealed risks
    • Failure to communicate effectively – failing to appreciate the complexity of the risks being managed.
    • Not managing risks in real time, you have to be able to monitor changing markets and,  respond to appropriately – You need a plan

    Being fully aware of the possible pitfalls we have methods and techniques’ that can overcome these issues and since we estimate the full probability distributions we can deploy a number of risk metrics  not having to relay on simple measures like value at risk – which we actually never uses.

    References

    COSO, (2004, September). Enterprise risk management — integrated framework. Retrieved from http://www.coso.org/documents/COSO_ERM_ExecutiveSummary.pdf

    COSO, (2009, October). Strengthening enterprise risk management for strategic advantage. Retrieved from http://www.coso.org/documents/COSO_09_board_position_final102309PRINTandWEBFINAL_000.pdf

    Sterman, J. D. (1991). A Skeptic’s Guide to Computer Models. In Barney, G. O. et al. (eds.),
    Managing a Nation: The Microcomputer Software Catalog. Boulder, CO: Westview Press, 209-229.

    Stulz, R.M. (2009, March). Six ways companies mismanage risk. Harvard Business Review (The Magazine), Retrieved from http://hbr.org/2009/03/six-ways-companies-mismanage-risk/ar/1

    Enterprise risk management is a process, effected by an entity’s board of directors,

    management and other personnel, applied in strategy setting and across the enterprise, designed to identify potential events that may affect the entity, and manage risk to be within its risk appetite, to provide reasonable assurance regarding the achievement of entity objectives. (COSO, 2004)

  • A short presentation of S@R

    A short presentation of S@R

    This entry is part 1 of 4 in the series A short presentation of S@R

     

    My general view would be that you should not take your intuitions at face value; overconfidence is a powerful source of illusions. Daniel Kahneman (“Strategic decisions: when,” 2010)

    Most companies have some sort of model describing the company’s operations. They are mostly used for budgeting, but in some cases also for forecasting cash flow and other important performance measures. Almost all are deterministic models based on expected or average values of input data; sales, cost, interest and currency rates etc. We know however that forecasts based on average values are on average wrong. In addition deterministic models will miss the important uncertainty dimension that gives both the different risks facing the company and the opportunities they produce.

    S@R has set out to create models (See Pdf: Short presentation of S@R) that can give answers to both deterministic and stochastic questions, by linking dedicated EBITDA models to holistic balance simulation taking into account all important factors describing the company. The basis is a real balance simulation model – not a simple cash flow forecast model.

    Generic Simulation_model

    Both the deterministic and stochastic balance simulation can be set about in two different alternatives:

    1. by a using a EBITDA model to describe the companies operations or,
    2. by using coefficients of fabrications  as direct input to the balance model.

    The first approach implies setting up a dedicated ebitda subroutine to the balance model. This will give detailed answers to a broad range of questions about operational performance and uncertainty, but entails a higher degree of effort from both the company and S@R.

    The use of coefficients of fabrications and their variations is a low effort (cost) alternative, using the internal accounting as basis. This will in many cases give a ‘good enough’ description of the company – its risks and opportunities: The data needed for the company’s economic environment (taxes, interest rates etc.) will be the same in both alternatives.

    EBITDA_model

    In some cases we have used both approaches for the same client, using the last approach for smaller daughter companies with production structures differing from the main companies.
    The second approach can also be considered as an introduction and stepping stone to a more holistic EBITDA model.

    What problems do we solve?

    • The aim regardless of approach is to quantify not only the company’s single and aggregated risks, but also the potential, thus making the company capable to perform detailed planning and of executing earlier and more apt actions against risk factors.
    • This will improve stability to budgets through higher insight in cost side risks and income-side potentials. This is achieved by an active budget-forecast process; the control-adjustment cycle will teach the company to better target realistic budgets – with better stability and increased company value as a result.
    • Experience shows that the mere act of quantifying uncertainty throughout the company – and thru modelling – describe the interactions and their effects on profit, in itself over time reduces total risk and increases profitability.
    • This is most clearly seen when effort is put into correctly evaluating strategies-projects and investments effects on the enterprise. The best way to do this is by comparing and choosing strategies by analysing the individual strategies risks and potential – and select the alternative that is dominant (stochastic) given the company’s chosen risk-profile.
    • Our aim is therefore to transform enterprise risk management from only safeguarding enterprise value to contribute to the increase and maximization of the firm’s value within the firm’s feasible set of possibilities.

    References

    Strategic decisions: when can you trust your gut?. (2010). McKinsey Quarterly, (March)

  • The Probability of Bankruptcy

    The Probability of Bankruptcy

    This entry is part 3 of 4 in the series Risk of Bankruptcy

     

    In the simulation we have for every year calculated all four metrics, and over the 250 runs their mean and standard deviation. All metrics is thus based on the same data set. During the forecast period the company invested heavily, financed partly by equity and partly by loans. The operations admittedly give a low but fairly stable return to assets. It was however never at any time in need for capital infusion to avoid insolvency. Since we now “know” the future we can judge the metrics ability to predict bankruptcy.

    A good metric should have a low probability of rejecting a true hypothesis of bankruptcy (false positive) and a high probability of rejecting a false hypothesis of bankruptcy (false negative).

    In the figures below the more or less horizontal curve gives the most likely value of the metric, while the vertical red lines indicate the 90% event space. By visual inspection of the area covered by the red lines we can get an indication of the false negative and false positive rate.

    The Z-Index shows an increase over time in the probability of insolvency, but the probability is very low for all years in the forecast period. The most striking effect is the increase in variance as we move towards the end of the simulated period. This is caused by the fact that uncertainty is “accumulated” over the forecast period. However, according to the Z-index, this company will not be endangered inside the 15 year horizon.

    z-index_time_serie

    In our case the Z-Index correctly identifies the probability of insolvency as small. By inspecting the yearly outcomes represented by the vertical lines we also find an almost zero false negative rate.

    The Z-score metrics tells a different story. The Z’’-score starts in the grey area and eventually ends up in the distress zone. The two others put the company in the distress zone for the whole forecast period.

    z-scores_time_series

    Since the distress zone for the Z-score is below 1.8, a visual inspection of the area covered by the red lines indicates that most of the outcomes fall in the distress zone. The Z-score metrics in this case performs type II errors by giving false negative judgements. However it is not clear what this means – only that the company in some respect is similar to companies gone bankrupt.

    z-score_time_serie

    If we look at the Z metrics for the individual years we find that the Z-score have values from minus two to plus three, in fact it has a coefficient of variation ranging from 300% to 500%. In addition there is very little evidence of the expected cumulative effect.

    z-coeff-of-var

    The other two metrics (Z’ and Z’’) shows much less variation and the expected cumulative effect.  The Z’-score outcomes fall entirely in the distress zone, giving a 100% false negative rate.

    z-score_time_serie1

    The Z’’-score outcome falls mostly in the distress zone below 1.1, but more and more falls in the grey area as we move forward in time. If we combine the safe zone with the grey we get a much lower false negative rate than for both the Z and the Z’ score.

    z-score_time_serie2

    It is difficult to draw conclusions from this exercise, but it points to the possibility of high false negative rates for the Z metrics. Use of ratios in assessing a company’s performance is often questionable and a linear metric based on a few such ratios will obviously have limitations. The fact that the original sample consisted of the same number of healthy and bankrupt companies might also have contributed to a bias in the discriminant coefficients. In real life the failure rate is much lower than 50%!