Warning: define(): Argument #3 ($case_insensitive) is ignored since declaration of case-insensitive constants is no longer supported in /home/u742613510/domains/strategy-at-risk.com/public_html/wp-content/plugins/wpmathpub/wpmathpub.php on line 65
Valuation – Strategy @ Risk

Tag: Valuation

  • You only live once

    You only live once

    This entry is part 4 of 4 in the series The fallacies of scenario analysis

    You only live once, but if you do it right, once is enough.
    — Mae West

    Let’s say that you are considering new investment opportunities for your company and that the sales department has guesstimated that the market for one of your products will most likely grow by a little less than 5 % per year. You then observe that the product already has a substantial market and that this in fifteen years’ time nearly will be doubled:

    Building a new plant to accommodate this market growth will be a large investment so you find that more information about the probability distribution for the products future sales is needed. Your sales department then “estimates” the market yearly growth to have a mean close to zero and a lower quartile of minus 5 % and an upper quartile of plus 7 %.

    Even with no market growth the investment is a tempting one since the market already is substantial and there is always a probability of increased market shares.

    As quartiles are given, you rightly calculate that there will be a 25 % probability that the growth will be above 7 %, but also that there will be a 25 % probability that it can be below minus 5 %. At the face of it, and with you being not too risk averse, this looks as a gamble worth taking.

    Then you are informed that the distribution will be heavily left skewed – opening for considerable downside risk. In fact it turns out that it looks like this:

    A little alarmed you order the sales department to come up with a Monte Carlo simulation giving a better view of the future possible paths of the market development.

    The return with the graph below giving the paths for the first ten runs in the simulation with the blue line giving average value and the green and red the 90 % and 10 % limits of the one thousand simulated outcomes:

    The blue line is the yearly ensemble  averages ((A set of multiple predictions that is all valid at the same time. The term “ensemble” is often used in physics and physics-influenced literature. In probability theory literature the term probability space is more prevalent.

    An ensemble provides reliable information on forecast uncertainties (e.g., probabilities) from the spread (diversity) amongst ensemble members.

    Also see: Ensemble forecasting; a numerical prediction method that is used to attempt to generate a representative sample of the possible future states of dynamic systems. Ensemble forecasting is a form of Monte Carlo analysis: multiple numerical predictions are conducted using slightly different initial conditions that are all plausible given the past and current set of observations. Often used in weather forecasting.));  that is the time series of average of outcomes. The series shows a small decline in market size but not at an alarming rate. The sales department’s advice is to go for the investment and try to conquer market shares.

    You then note that the ensemble average implies that you are able jump from path to path and since each is a different realization of the future that will not be possible – you only live once!

    You again call the sales department asking them to calculate each paths average growth rate (over time) – using their geometric mean – and report the average of these averages to you. When you plot both the ensemble and the time averages you find quite a large difference between them:

    The time average shows a much larger market decline than the ensemble average.

    It can be shown that the ensemble average always will overestimate (Peters, 2010) the growth and thus can falsely lead to wrong conclusions about the market development.

    If we look at the distribution of path end values we find that the lower quartile is 64 and the upper quartile is 118 with a median of 89:

    It thus turns out that the process behind the market development is non-ergodic ((The term ergodic is used to describe dynamical systems which have the same behavior averaged over time as averaged over space.))  or non-stationary ((Stationarity is a necessary, but not sufficient, condition for ergodicity. )). In the ergodic case both the ensemble and time averages would have been equal and the problem above would not have appeared.

    The investment decision that at first glance looked a simple one is now more complicated and can (should) not be decided based on market development alone.

    Since uncertainty increases the further we look into the future, we should never assume that we have ergodic situations. The implication is that in valuation or M&A analysis we should never use an “ensemble average” in the calculations, but always do a full simulation following each time path!

    References

    Peters, O. (2010). Optimal leverage from non-ergodicity. Quantitative Finance, doi:10.1080/14697688.2010.513338

    Endnotes

  • Valuation as a strategic tool

    Valuation as a strategic tool

    This entry is part 1 of 2 in the series Valuation

     

    Valuation is something usually done only when selling or buying a company (see: probability of gain and loss). However it is a versatile tool in assessing issues as risk and strategies both in operations and finance.

    The risk and strategy element is often not evident unless the valuation is executed as a Monte Carlo simulation giving the probability distribution for equity value (or the value of entity).  We will in a new series of posts take a look at how this distribution can be used.

    By strategy we will in the following mean a plan of action designed to achieve a particular goal. The plan may involve issues across finance and operation of the company; debt, equity, taxes, currency, markets, sales, production etc. The goal usually is to move the value distribution to the right (increasing value), but it may well be to shorten the left tail – reducing risk – or increasing the upside by lengthening the right tail.

    There are a variety of definitions of risk. In general, risk can be described as; “uncertainty of loss” (Denenberg, 1964); “uncertainty about loss” (Mehr &Cammack, 1961); or “uncertainty concerning loss” (Rabel, 1968). Greene defines financial risk as the “uncertainty as to the occurrence of an economic loss” (Greene, 1962).

    Risk can also be described as “measurable uncertainty” when the probability of an outcome is possible to calculate (is knowable), and uncertainty, when the probability of an outcome is not possible to determine (is unknowable) (Knight, 1921). Thus risk can be calculated, but uncertainty only reduced.

    In our context some uncertainty is objectively measurable like down time, error rates, operating rates, production time, seat factor, turnaround time etc. For others like sales, interest rates, inflation rates, etc. the uncertainty can only subjectively be measured.

    “[Under uncertainty] there is no scientific basis on which to form any calculable probability whatever. We simply do not know. Nevertheless, the necessity for action and for decision compels us as practical men to do our best to overlook this awkward fact and to behave exactly as we should if we had behind us a good Benthamite calculation of a series of prospective advantages and disadvantages, each multiplied by its appropriate probability waiting to be summed.” (John Maynard Keynes, 1937)

    On this basis we will proceed, using managers best guess about the range of possible values and most likely value for production related variables and market consensus etc. for possible outcomes for variables like inflation, interest etc. We will use this to generate appropriate distributions (log-normal) for sales, prices etc. For investments we will use triangular distributions to avoid long tails. Where, most likely values are hard to guesstimate or does not exist, we will use rectangular distributions.

    Benoit Mandelbrot (Mandelbrot, 2004) and Taleb Nasim (Nasim, 2007) have rightly criticized the economic profession for “over use” of the normal distribution – the bell curve. The argument is that it has too thin and short tails. It will thus underestimate the possibility of far out extremes – that is, low probability events with high impact (Black Swan’s).

    Since we use Monte Carlo simulation we can use any distribution to represent possible outcomes of a variable. So using the normal distribution for it’s statistically nicety is not necessary. We can even construct distributions that have the features we look for, without having to describe it mathematically.

    However using normal distributions for some variables and log-normal for others etc. in a value simulation will not give you a normal or log-normal distributed equity value. A number of things can happen in the forecast period; adverse sales, interest or currency rates, incurred losses, new equity called etc. Together with tax, legal and IFRS rules etc. the system will not be linear and much more complex to calculate then mere additions, subtraction or multiplication of probability distributions.

    We will in the following adhere to uncertainty and loss, where loss is an event where calculated equity value is less than book value of equity or in the case of M&A, less than the price paid.

    Assume that we have calculated  the value distribution (cumulative) for two different strategies. The distribution for current operations (blue curve) have a shape showing considerable downside risk (left tail) and a limited upside potential; give a mean equity value of $92M with a minimum of $-28M and a maximum of $150M. This, the span of possible outcomes and the fact that it can be negative compelled the board to look for new strategies reducing downside risk.

    strategy1

    They come up with strategy #1 (green curve) which to a risk-averse board is a good proposition: reducing downward risk by substantially shortening the left tail, increasing expected value of equity by moving the distribution to the right and reducing the overall uncertainty by producing a more vertical curve. In numbers; the minimum value was reduced to $68M, the mean value of equity was increased to $112M and the coefficient of variation was reduced from 30% to 14%. The upside potential increased somewhat but not much.
    To a risk-seeking board strategy#2 (red curve) would be a better proposition: the right tail has been stretched out giving a maximum value of $241M, however so have the left tail giving a minimum value to $-163M, increasing the event space and the coefficient of variation to 57%. The mean value of equity has been slightly reduced to $106M.

    So how could the strategies have been brought about?  Strategy #1 could involve introduction of long term energy contracts taking advantage of today’s low energy cost. Strategy #2 introduces a new product with high initial investments and considerable uncertainties about market acceptance.

    As we now can see the shape of the value distribution gives a lot of information about the company’s risk and opportunities.  And given the boards risk appetite it should be fairly simple to select between strategies just looking at the curves. But what if it is not obvious which the best is? We will return later in this series to answer that question and how the company’s risk and opportunities can be calculated.

    References

    Denenberg, H., et al. (1964). Risk and insurance. Englewood Cliffs, NJ: PrenticeHall,Inc.
    Greene, M. R. (1962). Risk and insurance. Cincinnati, OH: South-Western Publishing Co.
    Keynes, John Maynard. (1937). General Theory of Employment. Quarterly Journal of Economics.
    Knight, F. H. (1921). Risk, uncertainty and profit. Boston, MA: Houghton Mifflin Co.
    Mandelbrot, B., & Hudson, R. (2006). The (Mis) Behavior of Markets. Cambridge: Perseus Books Group.
    Mehr, R. I. and Cammack, E. (1961). Principles of insurance, 3.  Edition. Richard D. Irwin, Inc.
    Rable, W. H. (1968). Further comment. Journal of Risk and Insurance, 35 (4): 611-612.
    Taleb, N., (2007). The Black Swan. New York: Random House.