Warning: define(): Argument #3 ($case_insensitive) is ignored since declaration of case-insensitive constants is no longer supported in /home/u742613510/domains/strategy-at-risk.com/public_html/wp-content/plugins/wpmathpub/wpmathpub.php on line 65
Stochastic dominance – Strategy @ Risk

Tag: Stochastic dominance

  • Planning under Uncertainty

    Planning under Uncertainty

    This entry is part 3 of 6 in the series Balance simulation

     

    ‘Would you tell me, please, which way I ought to go from here?’ (asked Alice)
    ‘That depends a good deal on where you want to get to,’ said the Cat.
    ‘I don’t much care where—‘said Alice.
    ‘Then it doesn’t matter which way you go,’ said the Cat.
    –    Lewis Carroll, Alice’s Adventures in Wonderland

    Let’s say that the board have sketched a future desired state (value of equity) of the company and that you are left to find if it is possible to get there and if so – the road to take. The first part implies to find out if the desired state belongs to a set of feasible future states to your company. If it does you will need a road map to get there, if it does not you will have to find out what additional means you will need to get there and if it is possible to acquire those.

    The current state (equity value of) your company is in itself uncertain since it depends on future sales, costs and profit – variable that usually are highly uncertain. The desired future state is even more so since you need to find strategies (roads) that can take you there and of those the one best suited to the situation. The ‘best strategies’ will be those that with highest probability and lowest costs will give you the desired state that is, that has the desired state or a better one as a very probable outcome:

    Each of the ‘best strategies’ will have many different combinations of values for the variables –that describe the company – that can give the desired state(s). Using Monte Carlo simulations this means that a few, some or many of the thousands of runs – or realizations of future states-will give equity value outcomes that fulfill the required state. What we need then is to find how each of these has come about – the transition – and select the most promising ones.

    The S@R balance simulation model has the ability to make intermediate stops when the desired state(s) has been reached giving the opportunity to take out complete reports describing the state(s) and how it was reached and by what path of transitional states.

    The flip side of this is that we can use the same model and the same assumptions to take out similar reports on how undesirable states were reached – and their path of transitional states. This set of reports will clearly describe the risks underlying the strategy and how and when they might occur.

    The dominant strategy will then be the one that has the desired state or a better one as a very probable outcome and that have at the same time the least probability of highly undesirable outcomes (the stochastic dominant strategy):

    Mulling over possible target- or scenario analysis; calculating backwards the value of each variable required to meet the target is a waste of time since both the environment is stochastic and a number of different paths (time-lines) can lead to the desired state:

    And even if you could do the calculations, what would the probabilities be?

    Carroll, L., (2010). Alice‘s Adventures in Wonderland -Original Version. City: Cosimo Classics.

  • The Value of Information

    The Value of Information

    This entry is part 4 of 4 in the series A short presentation of S@R

     

    Enterprise risk management (ERM) only has value to those who know that the future is uncertain

    Businesses have three key needs:

    First, they need to have a product or service that people will buy. They need revenues.

    Second, they need to have the ability to provide that product or service at a cost less than what their customers will pay. They need profits. Once they have revenues and profits, their business is a valuable asset.

    So third, they need to have a system to avoid losing that asset because of unforeseen adverse experience. They need risk management.

    The top CFO concern is the firm’s ability to forecast results and the first stepping-stone in the process of forecasting results is to forecast demand – and this is where ERM starts.

    The main risk any firm faces is the variability (uncertainty) of demand. Since all production activities like procurement of raw materials, sizing of work force, investment in machinery etc. is based on expected demand the task of forecasting future demand is crucial. It is of course difficult and in most cases not possible to perfectly forecast demand, but it is always possible to make forecasts that give better results than mere educated guesses.

    We will attempt in the following to show the value of making good forecasts by estimating the daily probability distribution for demand. We will do this using a very simple model, assuming that:

    1. Daily demand is normal distributed with expected sales of 100 units and a standard deviation of 12 units,
    2. the product can not be stocked,
    3. it sells at $4 pr unit, has a variable production cost of $2 and a fixed production cost of $50.

    Now we need to forecast the daily sales. If we had perfect information about the demand, we would have a probability distribution for daily profit as given by the red histogram and line in the graphs below.

    • One form of forecast (average) is the educated guess using the average daily sales (blue histogram). As we can see from the graphs, this forecast method gives a large downside (too high production) and no upside (too low production).
    • A better method (limited information) would have been to forecast demand by its relation to some other observable variable. Let us assume that we have a forecast method that gives us a near perfect forecast in 50% of the cases and a probability distribution for the rest that is normal distributed with expected sales as for demand, but with a standard deviation of six units (green histogram).

    Profit-histogramWith the knowledge we have from (selecting strategy) we clearly se that the last forecast strategy is stochastic dominant to the use of average demand as forecast.

    ProfitSo, what is the value to the company of more informed forecasts than the mere use of expected sales? The graph below gives the distribution for the differences in profit (percentage) using the two methods. Over time, the second method  will give on average an 8% higher profit than just using the average demand as forecast.

    Diff-in-profitHowever, there is still another seven to eight percent room for further improvement in the forecasting procedure.

    If the company could be reasonable sure of the existence of a better forecast model than using the average, it would be a good strategy to put money into a betterment. In fact it could use up to 8% of all future profit if it knew that a method as good as or better than our second method existed.

  • Selecting Strategy

    Selecting Strategy

    This entry is part 2 of 2 in the series Valuation

     

    This is an example of how S&R can define, analyze, visualize and help in selecting strategies, for a broad range of issues; financial, operational and strategic.

    Assume that we have performed (see: Corporate-risk-analysis) simulation of corporate equity value for two different strategies (A and B). The cumulative distributions are given in the figure below.

    Since the calculation is based on a full simulation of both P&L and Balance, the cost of implementing the different strategies is in calculated; hence we can directly use the distributions as basis for selecting the best strategy.

    cum-distr-a-and-b_strategy

    In this rater simple case, we intuitively find strategy B as the best; being further out to the right of strategy A for all probable values of equity. However to be able to select the best strategy from more complicated and larger sets of feasible strategies we need a more well-grounded method than mere intuition.

    The stochastic dominance approach, developed on the foundation of von Neumann and Morgenstern’s expected utility paradigm (Neumann, Morgenstern, 1953) is such a method.

    When there is no uncertainty the maximum return criterion can be used both to rank and select strategies. With uncertainty however, we have to look for the strategy that maximizes the firms expected utility.

    To specify a utility function (U) we must have a measure that uniquely identifies each strategy (business) outcome and a function that maps each outcome to its corresponding utility. However utility is purely an ordinal measure. In other words, utility can be used to establish the rank ordering of strategies, but cannot be used to determine the degree to which one is preferred over the other.

    A utility function thus measures the relative value that a firm places on a strategy outcome. Here lies a significant limitation of utility theory: we can compare competing strategies, but we cannot assess the absolute value of any of those strategies. In other words, there is no objective, absolute scale for the firm’s utility of a strategy outcome.

    Classical utility theory assumes that rational firms seek to maximize their expected utility and to choose among their strategic alternatives accordingly. Mathematically, this is expressed as:

    Strategy A is preferred to strategy B if and only if:
    EAU(X) ≥ EBU(X) , with at least one strict inequality.

    The features of the utility function reflect the risk/reward attitudes of the firm. These same features also determine what stochastic characteristics the strategy distributions must possess if one alternative is to be preferred over another. Evaluation of these characteristics is the basis of stochastic dominance analysis (Levy, 2006).

    Stochastic dominance as a generalization of utility theory eliminates the need to explicitly specify a firm’s utility function. Rather, general mathematical statements about wealth preference, risk aversion, etc. are used to develop decision rules for selecting between strategic alternatives.

    First order stochastic dominance.

    Assuming that U’≥ 0 i.e. the firm has increasing wealth preference, strategy A is preferred to strategy B (denoted as AD1B i.e. A dominates B by 1st order stochastic dominance) if:

    EAU(X) ≥ EBU(X)  ↔  SA(x) ≤ SB(x)

    Where S(x) is the strategy’s  distribution function and there is at least one strict inequality.

    If  AD1B , then for all values x, the probability of obtaining x or a value higher than x is larger under A than under B;

    Sufficient rule 1:   A dominates B if Min SA(x) ≥ Max SB(x)   (non overlapping)

    Sufficient rule 2:   A dominates B if SA(x) ≤ SB(x)  for all x   (SA ‘below’ SB)

    Most important Necessary rules:

    Necessary rule 1:  AD1B → Mean SA > Mean SB

    Necessary rule 2:  AD1B → Geometric Mean SA > Geometric Mean SB

    Necessary rule 3:  AD1B → Min SA(x) ≥  Min SB(x)

    For the case above we find that strategy B dominates strategy A – BD1A  – since the sufficient rule 2 for first order dominance is satisfied:

    strategy-a-and-b_strategy1

    And of course since one of the sufficient conditions is satisfied all of the necessary conditions are satisfied. So our intuition about B being the best strategy is confirmed. However there are cases where intuition will not work:

    cum-distr_strategy

    In this case the distributions cross and there is no first order stochastic dominance:

    strategy-1-and-2_strategy

    To be able to determine the dominant strategy we have to make further assumptions on the utility function – U” ≤ (risk aversion) etc.

    N-th Order Stochastic Dominance.

    With n-th order stochastic dominance we are able to rank a large class of strategies. N-th order dominance is defined by the n-th order distribution function:

    S^1(x)=S(x),  S^n(x)=int{-infty}{x}{S^(n-1)(u) du}

    where S(x) is the strategy’s distribution function.

    Then strategy A dominates strategy B in the sense of n-order stochastic dominance – ADnB  – if:

    SnA(x) ≤ SnB(x) , with at least one strict inequality and

    EAU(X) ≥ EBU(X) , with at least one strict inequality,

    for all U satisfying (-1)k U (k) ≤0 for k= 1,2,…,n. , with at least one strict inequality

    The last assumption implies that U has positive odd derivatives and negative even derivatives:

    U’  ≥0 → increasing wealth preference

    U”  ≤0 → risk aversion

    U’’’ ≥0 → ruin aversion (skewness preference)

    For higher derivatives the economic interpretation is more difficult.

    Calculating the n-th order distribution function when you only have observations of the first order distribution from Monte Carlo simulation can be difficult. We will instead use the lower partial moments (LPM) since (Ingersoll, 1987):

    SnA(x) ≡ LPMAn-1/(n-1)!

    Thus strategy A dominates strategy B in the sense of n-order stochastic dominance – ADnB  – if:

    LPMAn-1 ≤ LPMBn-1

    Now we have the necessary tools for selecting the dominant strategy of strategy #1 and #2. To se if we have 2nd order dominance, we calculate the first order lower partial moments – as shown in the graph below.

    2nd-order_strategy

    Since the curves of the lower moments still crosses both strategies is efficient i.e. none of them dominates the other. We therefore have to look further using the 2nd order LPM’s to investigate the possibility of 3rd order dominance:

    3rd-order_strategy

    However, it is first when we calculate the 4th order LPM’s that we can conclude with 5th order stochastic dominance of strategy #1 over strategy #2:

    5th-order_strategy

    We then have S1D5S2 and we need not look further since (Yamai, Yoshiba, 2002) have shown that:

    If: S1DnS2 then S1Dn+1S2

    So we end up with strategy #1 as the preferred strategy for a risk avers firm. It is characterized by a lower coefficient of variation (0.19) than strategy #2 (0.45), higher minimum value (160) than strategy#2 (25), higher median value (600) than strategy #2 (561). But it was not only these facts that gave us strategy #1 as stochastic dominant, because it has negative skewness (-0.73) against positive skewness (0.80) for strategy #2 and a lower expected value (571) than strategy #2 (648), but the ‘sum’ of all these characteristics.

    A digression

    It is tempting to assume that since strategy #1 is stochastic dominant strategy #2 for risk avers firms (with U”< 0) strategy #2 must be stochastic dominant for risk seeking firms (with U” >0) but this is necessarily not the case.

    However even if strategy #2 has a larger upside than strategy #1, it can be seen from the graphs of the two strategies upside potential ratio (Sortino, 1999):
    upside-ratio_strategythat if we believe that the outcome will be below a minimal acceptable return (MAR) of 400 then strategy #1 has a higher minimum value and upside potential than #2 and vice versa above 400.

    Rational firm’s should be risk averse below the benchmark MAR, and risk neutral above the MAR, i.e., they should have an aversion to outcomes that fall below the MAR . On the other hand the higher the outcomes are above the MAR the more they should like them (Fishburn, 1977). I.e. firm’s seek upside potential with downside protection.

    We will return later in this serie to  how the firm’s risk and opportunities can be calculated given the selected strategy.

    References

    Fishburn, P.C. (1977). Mean-Risk analysis with Risk Associated with Below Target Returns. American Economic Review, 67(2), 121-126.

    Ingersoll, J. E., Jr. (1987). Theory of Financial Decision Making. Rowman & Littlefield Publishers.

    Levy, H., (2006). Stochastic Dominance. Berlin: Springer.

    Neumann, J., & Morgenstern, O. (1953). Theory of Games and Economic Behavior. Princeton: Princeton University Press.

    Sortino, F , Robert van der Meer, Auke Plantinga (1999).The Dutch Triangle. The Journal of Portfolio Management, 26(1)

    Yamai, Y., Toshinao Yoshiba (2002).Comparative Analysis of Expected Shortfall and Value-at-Risk (2): Expected Utility Maximization and Tail Risk. Monetary and Economic Studies, April, 95-115.