Warning: define(): Argument #3 ($case_insensitive) is ignored since declaration of case-insensitive constants is no longer supported in /home/u742613510/domains/strategy-at-risk.com/public_html/wp-content/plugins/wpmathpub/wpmathpub.php on line 65
EBITDA – Strategy @ Risk

Tag: EBITDA

  • Budgeting Revisited

    Budgeting Revisited

    This entry is part 2 of 2 in the series Budgeting

     

    Introduction

    Budgeting is one area that is well suited for Monte Carlo Simulation. Budgeting involves personal judgments about future values of large number of variables like; sales, prices, wages, down- time, error rates, exchange rates etc. – variables that describes the nature of the business.

    Everyone that has been involved in a budgeting process knows that it is an exercise in uncertainty; however it is seldom described in this way and even more seldom is uncertainty actually calculated as an integrated part of the budget.

    Good budgeting practices are structured to minimize errors and inconsistencies, drawing in all the necessary participants to contribute their business experience and the perspective of each department. Best practice in budgeting entails a mixture of top-down guidelines and standards, combined with bottom-up individual knowledge and experience.

    Excel, the de facto tool for budgeting, is a powerful personal productivity tool. Its current capabilities, however, are often inadequate to support the critical nature of budgeting and forecasting. There will come a point when a company’s reliance on spreadsheets for budgeting leads to severely ineffective decision-making, lost productivity and lost opportunities.

    Spreadsheets can accommodate many tasks – but, over time, some of the models running in Excel may grow too big for the spreadsheet application. Programming in a spreadsheet model often requires embedded assumptions, complex macros, creating opportunities for formula errors and broken links between workbooks.

    It is common for spreadsheet budget models and their intricacies to be known and maintained by a single person who becomes a vulnerability point with no backup. And there are other maintenance and usage issues:

    A.    Spreadsheet budget models are difficult to distribute and even more difficult to collect and consolidate.
    B.    Data confidentiality is almost impossible to maintain in spreadsheets, which are not designed to hide or expose data based upon each user’s role.
    C.    Financial statements are usually not fully integrated leaving little basis for decision making.

    These are serious drawbacks for corporate governance and make the audit process more difficult.

    This is a few of many reasons why we use a dedicated simulation language for our models that specifically do not mix data and code.

    The budget model

    In practice budgeting can be performed on different levels:
    1.    Cash Flow
    2.    EBITDA
    3.    EBIT
    4.    Profit or
    5.    Company value.

    The most efficient is on EBITDA level, since taxes, depreciation and amortization on the short-term is mostly given. This is also the level where consolidation of daughter companies easiest is achieved. An EBITDA model describing the firm’s operations can again be used as a subroutine for more detailed and encompassing analysis thru P&L and Balance simulation.

    The aim will then to estimate of the firm’s equity value and is probability distribution. This can again be used for strategy selection etc.

    Forecasting

    In today’s fast moving and highly uncertain markets, forecasting have become the single most important element of the budget process.

    Forecasting or predictive analytics can best be described as statistic modeling enabling prediction of future events or results, using present and past information and data.

    1. Forecasts must integrate both external and internal cost and value drivers of the business.
    2. Absolute forecast accuracy (i.e. small confidence intervals) is less important than the insight about how current decisions and likely future events will interact to form the result.
    3. Detail does not equal accuracy with respect to forecasts.
    4. The forecast is often less important than the assumptions and variables that underpin it – those are the things that should be traced to provide advance warning.
    5.  Never relay on single point or scenario forecasting.

    All uncertainty about the market sizes, market shares, cost and prices, interest rates, exchange rates and taxes etc. – and their correlation will finally end up contributing to the uncertainty in the firm’s budget forecasts.

    The EBITDA model

    The EBITDA model have to be detailed enough to capture all important cost and value drivers, but simple enough to be easy to update with new data and assumptions.

    Input to the model can come from different sources; any internal reporting system or spread sheet. The easiest way to communicate with the model is by using Excel  spread sheet – templates.

    Such templates will be pre-defined in the sense that the information the model needs is on a pre-determined place in the workbook.  This makes it easy if the budgets for daughter companies is reported (and consolidated) in a common system (e.g. SAP) and can ‘dump’ onto an excel spread sheet. If the budgets are communicated directly to head office or the mother company then they can be read directly by the model.

    Standalone models and dedicated subroutines

    We usually construct our EBITDA models so that they can be used both as a standalone model and as a subroutine for balance simulation. The model can then be used both for short term budgeting and long-term EBITDA forecasting and simulation and for short/long term balance forecasting and simulation. This means that the same model can be efficiently reused in different contexts.
    Rolling budgets and forecast

    The EBITDA model can be constructed to give rolling forecast based on updated monthly or quarterly values, taking into consideration the seasonality of the operations. This will give new forecasts (new budget) for the remaining of the year and/or the next twelve month. By forecasts we again mean the probability distributions for the budget variables.

    Even if the variables have not changed, the fact that we move towards the end of the year will reduce the uncertainty of if the end year results and also for the forecast for the next twelve month.

    Uncertainty

    The most important part of budgeting with Monte Carlo simulation is assessment of the uncertainty in the budgeted (forecasted) cost and value drivers. This uncertainty is given as the most likely value (usually the budget figure) and the interval where it is assessed with a high degree of confidence (approx. 95%) to fall.

    We will then use these lower and upper limits (5% and 95%) for sales, prices and other budget items and the budget values as indicators of the shape of the probability distributions for the individual budget items. Together they described the range and uncertainty in the EBITDA forecasts.

    This gives us the opportunity to simulate (Monte Carlo) a number of possible outcomes – by a large number of runs of the model, usually 1000 – of net revenue, operating expenses and finally EBITDA. This again will give us their probability distributions

    Most managers and their staff have, based on experience, a good grasp of the range in which the values of their variables will fall. It is not based on any precise computation but is a reasonable assessment by knowledgeable persons. Selecting the budget value however is more difficult. Should it be the “mean”
    or the “most likely value” or should the manager just delegate fixing of the values to the responsible departments?

    Now we know that the budget values might be biased by a number of reasons – simplest by bonus schemes etc. – and that budgets based on average assumptions are wrong on average .

    This is therefore where the individual mangers intent and culture will be manifested, and it is here the greatest learning effect for both the managers and the mother company will be, as under-budgeting  and overconfidence  will stand out as excessive large deviations from the model calculated expected value (probability weighted average over the interval).

    Output

    The output from the Monte Carlo simulation will be in the form of graphs that puts all run’s in the simulation together to form the cumulative distribution for the operating expenses (red line):

    In the figure we have computed the frequencies of observed (simulated) values for operating expenses (blue frequency plot) – the x-axis gives the operating expenses and the left y-axis the frequency. By summing up from left to right we can compute the cumulative probability curve. The s-shaped curve (red) gives for every point the probability (on the right y-axis) for having an operating expenses less than the corresponding point on the x-axis. The shape of this curve and its range on the x-axis gives us the uncertainty in the forecasts.

    A steep curve indicates little uncertainty and a flat curve indicates greater uncertainty.  The curve is calculated from the uncertainties reported in the reporting package or templates.

    Large uncertainties in the reported variables will contribute to the overall uncertainty in the EBITDA forecast and thus to a flatter curve and contrariwise. If the reported uncertainty in sales and prices has a marked downside and the costs a marked upside the resulting EBITDA distribution might very well have a portion on the negative side on the x-axis – that is, with some probability the EBITDA might end up negative.

    In the figure below the lines give the expected EBITDA and the budget value. The expected EBIT can be found by drawing a horizontal line from the 0.5 (50%) point on the y-axis to the curve and a vertical line from this point on the curve to the x-axis. This point gives us the expected EBITDA value – the point where it is 50% probability of having a value of EBITDA below and 100%-50%=50% of having it above.

    The second set of lines give the budget figure and the probability that it will end up lower than budget. In this case it is almost a 100% probability that it will be much lower than the management have expected.

    This distributions location on the EBITDA axis (x-axis) and its shape gives a large amount of information of what we can expect of possible results and their probability.

    The following figure that gives the EBIT distributions for a number of subsidiaries exemplifies this. One wills most probable never earn money (grey), three is cash cows (blue, green and brown) and the last (red) can earn a lot of money:

    Budget revisions and follow up

    Normally – if something extraordinary does not happen – we would expect both the budget and the actual EBITDA to fall somewhere in the region of the expected value. We have however to expect some deviation both from budget and expected value due to the nature of the industry.  Having in mind the possibility of unanticipated events or events “outside” the subsidiary’s budget responsibilities, but affecting the outcome this implies that:

    • Having the actual result deviating from budget is not necessary a sign of bad budgeting.
    • Having the result close to or on budget is not necessary a sign of good budgeting.

    However:

    •  Large deviations between budget and actual result needs looking into – especially if the deviation to expected value also is large.
    • Large deviation between budget and expected value can imply either that the limits are set “wrong” or that the budget EBITDA is not reflecting the downside risk or upside opportunity expressed by the limits.

    Another way of looking at the distributions is by the probabilities of having the actual result below budget that is how far off line the budget ended up. In the graph below, country #1’s budget came out with a probability of 72% of having the actual result below budget.  It turned out that the actual figure with only 36% probability would have been lower. The length of the bars thus indicates the budget discrepancies.

    For country# 2 it is the other way around: the probability of having had a result lower than the final result is 88% while the budgeted figure had a 63% probability of having been too low. In this case the market was seriously misjudged.

    In the following we have measured the deviation of the actual result both from the budget values and from the expected values. In the figures the left axis give the deviation from expected value and the bottom axis the deviation from budget value.

    1.  If the deviation for a country falls in the upper right quadrant the deviation are positive for both budget and expected value – and the country is overachieving.
    2. If the deviation falls in the lower left quadrant the deviation are negative for both budget and expected value – and the country is underachieving.
    3. If the deviation falls in the upper left quadrant the deviation are negative for budget and positive for expected value – and the country is overachieving but has had a to high budget.

    With a left skewed EBITDA distribution there should not be any observations in the lower right quadrant that will only happen when the distribution is skewed to the right – and then there will not be any observations in the upper left quadrant:

    As the manager’s gets more experienced in assessing the uncertainty they face, we see that the budget figures are more in line with the expected values and that the interval’s given is shorter and better oriented.

    If the budget is in line with expected value given the described uncertainty, the upside potential ratio should be approx. one. A high value should indicate a potential for higher EBITDA and vice versa. Using this measure we can numerically describe the managements budgeting behavior:

    Rolling budgets

    If the model is set up to give rolling forecasts of the budget EBITDA as new and in this case monthly data, we will get successive forecast as in the figure below:

    As data for new month are received, the curve is getting steeper since the uncertainty is reduced. From the squares on the lines indicating expected value we see that the value is moving slowly to the right and higher EBITDA values.

    We can of course also use this for long term forecasting as in the figure below:

    As should now be evident; the EBITDA Monte Carlo model have multiple fields of use and all of them will increases the managements possibilities of control and foresight giving ample opportunity for prudent planning for the future.

     

     

  • Concession Revenue Modelling and Forecasting

    Concession Revenue Modelling and Forecasting

    This entry is part 2 of 4 in the series Airports

     

    Concessions are an important source of revenue for all airports. An airport simulation model should therefore be able to give a good forecast of revenue from different types of concessions -given a small set of assumptions about local future price levels and income development for its international Pax. Since we already have a good forecast model for the expected number of international Pax (and its variation) we will attempt to forecast the airports revenue pr Pax from one type of concession and use both forecasts to estimate the airports revenue from that concession.

    The theory behind is simple; the concessionaires sales is a function of product price and the customers (Pax) income level. Some other airport specific variables also enter the equation however they will not be discussed here. As a proxy for change in Pax income we will use the individual countries change in GDP.  The price movement is represented by the corresponding movements of a price index.

    We assume that changes in the trend for the airports revenue is a function of the changes in the general income level and that the seasonal variance is caused by the seasonal changes in the passenger mix (business/leisure travel).

    It is of course impossible to forecast the exact level of revenue, but that is as we shall see where Monte Carlo simulation proves its worth.

    The fist step is a time series analysis of the observed revenue pr Pax, decomposing the series in trend and seasonal factors:

    Concession-revenue

    The time series fit turns out to be very good explaining more than 90 % of the series variation. At this point however our only interest is the trend movements and its relation to change in prices, income and a few other airport specific variables. We will however here only look at income – the most important of the variable.

    Step two, is a time series analysis of income (weighted average of GDP development in countries with majority of Pax) separating trend and seasonal factors. This trend is what we are looking for; we want to use it to explain the trend movements in the revenue.

    Step three, is then a regression of the revenue trend on the income trend as shown in the graph below. The revenue trend was estimated assuming a quadratic relation over time and we can see that the fit is good. In fact 98 % of the variance in the revenue trend can be explained by the change in income (+) trend:

    Concession-trend

    Now the model will be as follows – step four:

    1. We will collect the central banks GDP forecasts (base line scenario) and use this to forecast the most likely change in income trend
    2. More and more central banks are now producing fan charts giving the possible event space (with probabilities) for their forecasts. We will use this to establish a probability distribution for our income proxy

    Below is given an example of a fan chart taken from the Bank of England’s inflation report November 2009. (Bank of England, 2009) ((The fan chart depicts the probability of various outcomes for GDP growth.  It has been conditioned on the assumption that the stock of purchased assets financed by the issuance of central bank reserves reaches £200 billion and remains there throughout the forecast period.  To the left of the first vertical dashed line, the distribution reflects the likelihood of revisions to the data over the past; to the right, it reflects uncertainty over the evolution of GDP growth in the future.  If economic circumstances identical to today’s were to prevail on 100 occasions, the MPC’s best collective judgement is that the mature estimate of GDP growth would lie within the darkest central band on only 10 of those occasions.  The fan chart is constructed so that outturns are also expected to lie within each pair of the lighter green areas on 10 occasions.  In any particular quarter of the forecast period, GDP is therefore expected to lie somewhere within the fan on 90 out of 100 occasions.  The bands widen as the time horizon is extended, indicating the increasing uncertainty about outcomes.  See the box on page 39 of the November 2007 Inflation Report for a fuller description of the fan chart and what it represents.  The second dashed line is drawn at the two-year point of the projection.))

    Bilde1

    3. We will then use the relation between historic revenue and income trend to forecast the revenue trend
    4. Adding the seasonal variation using the estimated seasonal factors – give us a forecast of the periodic revenue.

    For our historic data the result is shown in the graph below:

    Concession-revenue-estimate

    The calculated revenue series have a very high correlation with the observed revenue series (R=0.95) explaining approximately 90% of the series variation.

    Step five, now we can forecast the revenue from concession pr Pax figures for the next periods (month, quarters or years), using Monte Carlo simulation:

    1. From the income proxy distribution we draw a possible change in yearly income and calculates the new trend
    2. Using the estimated relation between historic revenue and income trend we forecast the most likely revenue trend and calculate the 95% confidence interval. We then use this to establish a probability distribution for the period’s trend level and draws a value. This value is adjusted with the period’s seasonal factor and becomes our forecasted value for the airports revenue from the concession – for this period.

    Running thru this a thousand times we get a distribution as given below:

    Concession-revenue-distribuIn the airport EBITDA model this only a small but important part for forecasting future airport revenue. As the models data are updated (monthly) all the time series analysis and regressions are redone dynamically to capture changes in trends and seasonal factors.

    The level of monthly revenue from the concession is obviously more complex than can be described with a small set of variable and assumptions. Our model has with high probability specification errors and we may or may not have violated some of the statistical methods assumptions (the model produces output to monitor this). But we feel that we are far better of than having put all our money on a single figure as a forecast. At least we know something about the forecasts uncertainty.

    References

    Bank of England. (2009, November). Inflation Report November 2009 . Retrieved from http://www.bankofengland.co.uk/publications/inflationreport/ir09nov5.ppt

  • Airport Simulation

    Airport Simulation

    This entry is part 1 of 4 in the series Airports

     

    The basic building block in airport simulation is the passenger (Pax) forecast. This is the basis for subsequent estimation of aircraft movements (ATM), investment in terminal buildings and airside installations, all traffic charges, tax free sales etc. In short it is the basic determinant of the airport’s economics.

    The forecast model is usually based on a logarithmic relation between Pax, GDP and airfare price movement. ((Manual on Air Traffic Forecasting. ICAO, 2006)), ((Howard, George P. et al. Airport Economic Planning. Cambridge: MIT Press, 1974.))

    There has been a large number of studies over time and across the world on Air Travel Demand Elasticities, a good survey is given in a Canadian study ((Gillen, David W.,William G. Morrison, Christopher Stewart . “Air Travel Demand Elasticities: Concepts, Issues and Measurement.” 24 Feb 2009 http://www.fin.gc.ca/consultresp/Airtravel/airtravStdy_-eng.asp)).

    In a recent project for an European airport – aimed at establishing an EBITDA model capable of simulating risk in its economic operations – we embedded the Pax forecast models in the EBITDA model. Since the seasonal variations in traffic are very pronounced and since the cycles are reverse for domestic and international traffic a good forecast model should attempt to forecast the seasonal variations for the different groups of travellers.

    int_dom-pax

    In the following graph we have done just that, by adding seasonal factors to the forecast model based on the relation between Pax and change in GDP and air fare cost. We have however accepted the fact that neither is the model specification complete, nor is the seasonal factors fixed and constant. We therefore apply Monte Carlo simulation using estimation and forecast errors as the stochastic parts. In the figure the green lines indicate the 95% limit, the blue the mean value and the red the 5% limit. Thus with 90% probability will the number of monthly Pax fall within these limits.

    pax

    From the graph we can clearly se the effects of estimation and forecast “errors” and the fact that it is international travel that increases most as GDP increases (summer effect).

    As an increase in GDP at this point of time is not exactly imminent we supply the following graph, displaying effects of different scenarios in growth in GDP and air fare cost.

    pax-gdp-and-price

    References