Warning: define(): Argument #3 ($case_insensitive) is ignored since declaration of case-insensitive constants is no longer supported in /home/u742613510/domains/strategy-at-risk.com/public_html/wp-content/plugins/wpmathpub/wpmathpub.php on line 65
Corporate risk analysis – Page 5 – Strategy @ Risk

Category: Corporate risk analysis

  • Budgeting

    Budgeting

    This entry is part 1 of 2 in the series Budgeting

     

    Budgeting is one area that is well suited for Monte Carlo Simulation. Budgeting involves personal judgments about future values of large number of variables like; sales, prices, wages, down- time, error rates, exchange rates etc. – variables that describes the nature of the business.

    Everyone that has been involved in a budgeting process knows that it is an exercise in uncertainty; however it is seldom described in this way and even more seldom is uncertainty actually calculated as an integrated part of the budget.

    Admittedly a number of large public building projects are calculated this way, but more often than not is the aim only to calculate some percentile (usually 85%) as expected budget cost.

    Most managers and their staff have, based on experience, a good grasp of the range in which the values of their variables will fall.  A manager’s subjective probability describes his personal judgement ebitabout how likely a particular event is to occur. It is not based on any precise computation but is a reasonable assessment by a knowledgeable person. Selecting the budget value however is more difficult. Should it be the “mean” or the “most likely value” or should the manager just delegate fixing of the values to the responsible departments?

    Now we know that the budget values might be biased by a number of reasons – simplest by bonus schemes etc. – and that budgets based on average assumptions are wrong on average ((Savage, Sam L. “The Flaw of Averages”, Harvard Business Review, November (2002): 20-21.))

    When judging probability, people can locate the source of the uncertainty either in their environment or in their own imperfect knowledge ((Kahneman D, Tversky A . ” On the psychology of prediction.” Psychological Review 80(1973): 237-251)). When assessing uncertainty, people tend to underestimate it – often called overconfidence and hindsight bias.

    Overconfidence bias concerns the fact that people overestimate how much they actually know: when they are p percent sure that they have predicted correctly, they are in fact right on average less than p percent of the time ((Keren G.  “Calibration and probability judgments: Conceptual and methodological issues”. Acta Psychologica 77(1991): 217-273.)).

    Hindsight bias concerns the fact that people overestimate how much they would have known had they not possessed the correct answer: events which are given an average probability of p percent before they have occurred, are given, in hindsight, probabilities higher than p percent ((Fischhoff B.  “Hindsight=foresight: The effect of outcome knowledge on judgment under uncertainty”. Journal of Experimental Psychology: Human Perception and Performance 1(1975) 288-299.)).

    We will however not endeavor to ask for the managers subjective probabilities only ask for the range of possible values (5-95%) and their best guess of the most likely value. We will then use this to generate an appropriate log-normal distribution for sales, prices etc. For investments we will use triangular distributions to avoid long tails. Where, most likely values are hard to guesstimate we will use rectangular distributions.

    We will then proceed as if the distributions where known (Keynes):

    [Under uncertainty] there is no scientific basis on which to form any calculable probability whatever. We simply do not know. Nevertheless, the necessity for action and for decision compels us as practical men to do our best to overlook this awkward fact and to behave exactly as we should if we had behind us a good Benthamite calculation of a series of prospective advantages and disadvantages, each multiplied by its appropriate probability waiting to be summed.  ((John Maynard Keynes. ” General Theory of Employment, Quarterly Journal of Economics (1937))

    budget_actual_expected

    The data collection can easily be embedded in the ordinary budget process, by asking the managers to set the lower and upper 5% values for all variables demining the budget, and assuming that the budget figures are the most likely values.

    This gives us the opportunity to simulate (Monte Carlo) a number of possible outcomes – usually 1000 – of net revenue, operating expenses and finally EBIT (DA).

    In this case the budget was optimistic with ca 84% probability of having an outcome below and only with 26% probability of having an outcome above. The accounts also proved it to be high (actual) with final EBIT falling closer to the expected value. In our experience expected value is a better estimator for final result than the budget  EBIT.

    However, the most important part of this exercise is the shape of the cumulative distribution curve for EBIT. The shape gives a good picture of the uncertainty the company faces in the year to come, a flat curve indicates more uncertainty both in the budget forecast and the final result than a steeper curve.

    Wisely used the curve (distribution) can be used both to inform stakeholders about risk being faced and to make contingency plans foreseeing adverse events.percieved-uncertainty-in-ne

    Having the probability distributions for net revenue and operating expenses we can calculate and plot the manager’s perceived uncertainty by using coefficients of variation.

    In our material we find on average twice as much uncertainty in the forecasts for net revenue than for operating expenses.

    As many often have budget values above expected value they are exposing a downward risk. We can measure this risk by the Upside Potential Ratio, which is the expected return above budget value per unit of downside risk. It can be found using the upper and lower moments calculated at budget value.

    References

  • Corporate Risk Analysis

    Corporate Risk Analysis

    This entry is part 2 of 6 in the series Balance simulation

     

    Strategy @Risk has developed a radical and new approach to the way risk is assessed and measured when considering current and future investment. A key part of our activity in this sensitive arena has been the development of a series of financial models that facilitate understanding and measurement of risk set against a variety of operating scenarios.

    We have written a paper which outlines our approach to Corporate Risk Analysis to outline our approach. Read it here.

    Risk

    Our purpose in this paper is to show that every item written into a firm’s profit and loss account and its balance sheet is a stochastic variable with a probability distribution derived from probability distributions for each factor of production. Using this approach we are able to derive a probability distribution for any measure used in valuing companies and in evaluating strategic investment decisions. Indeed, using this evaluation approach we are able to calculate expected gain, loss and probability when investing in a company where the capitalized value (price) is known.

  • Real options

    Real options

    In real life both for investment decisions and in valuation of companies there are managerial flexibility in the sense that at future points of time there is flexibility in choosing among alternatives.

    When investing, the simplest example is the choice between to invest after a feasibility study or walk away. In valuation the choice can be at a future point of time to continue operation or disinvest.

    These alternatives are real options available for the decision maker. Recognizing these real options will usually increase (reduce loss) the value of the investment or the company under valuation.

    It is well known that most standard valuation techniques of risk-adjusted discounted cash flow (DCF) analysis fails to capture all sources of value associated with this type of investment, in that it assumes that the decision to invest is irreversible and inflexible, i.e., the investment cash flows are committed and fixed for the life of the project.

    A main contribution of real options analysis is to incorporate managerial flexibility inherent in the project in its valuation. Added flexibility value, overlooked in DCF analysis, comes from managerial decisions that can take advantage of price movements: operating flexibility and investment timing flexibility.

    Strategy @ Risk has the ability to incorporate a client’s specific decision alternative in the simulation model. Thus combining Monte Carlo simulation with decision tree analysis. The four-step process of the real option decision analysis is shown below.

    roaprocess

    Production Plant Case

    The board faces the following situation: The company has a choice between building a plant with production capacity of 150 000 metric tons at a most likely cost of $450 mill. or a smaller plant with a capacity of 85 000 metric tons at a most likely cost of $300 mill..

    The demand for the product is over 100 000 metric tons and rising. The decision between a small and large plant will be taken in year 1 and full production starts in year 2.

    If the decision has been to build the smaller plant (at a higher cost per unit produced) the capacity can be increased by 65 000 metric tons at most likely cost of $275 mill. (Normal distributed with variance of ±25%). The decision to increase capacity will be taken in year 2 if the demand exceeds 110 000 metric tons. It is assumed that the demand is normally distributed with a most likely demand of 100 000 metric tons, and demand varies ±20% (upper and lower 5% limit). The demand later periods is assumed to have an increasing variance and a 30% autocorrelation

    In year 3 and 4 it is considered that there is a 40% chance that if sales has been good (over 110 000 metric tons) a competitor will have entered the market reducing sales by 30 000 metric tons. If the demand falls below 70 000 metric tons the company will disinvest.

    The decisions will be made on the value of the discounted cash flows (20% discount rate).
    The above problem can be presented as a decision tree.

    real-options-web

    The boxes represent the “decision point”. The circles represent chance events. The chance events may be continuous, as is the case with demand forecasts, or discrete, as is the case of a competitor entering the market or not.

    Net Present Value of the Alternatives

    The analysis using both the decision tree and Monte Carlo simulation gives us the net present value of the different alternatives. As shown in the figures to the right, the best alternative is to build a large plant immediately giving a net present value of $679 mill.
    A small plant will give a lower net present value (NPV $626 mill.) even if we increase the capacity at a later stage (NPV $637 mill.).

    plant-alternatives

    In this case it will never be profitable to disinvest at any point of time. This will always give a lower value.In some cases it is difficult to distinguish the best strategy from its alternatives. We will in a later post come back to selection strategies using stochastic dominance.

  • What we do; Predictive and Prescriptive Analytics

    What we do; Predictive and Prescriptive Analytics

    This entry is part 1 of 3 in the series What We Do

     

    Analytics is the discovery and communication of meaningful patterns in data. It is especially valuable in areas rich with recorded information – as in all economic activities. Analytics relies on the simultaneous application of statistical methods, simulation modeling and operations research to quantify performance.

    Prescriptive analytics goes beyond descriptive, diagnostic and predictive analytics; by being able to recommend specific courses of action and show the likely outcome of each decision.

    Predictive analytics will tell what probably will happen, but will leave it up to the client to figure out what to do with it.

    Prescriptive analytics will also tell what probably will happen, but in addition:  when it probably will happen and why it likely will happen, thus how to take advantage of this predictive future. Since there are always more than one course of action prescriptive analytics have to include: predicted consequences of actions, assessment of the value of the consequences and suggestions of the actions giving highest equity value for the company.

    By employing simulation modeling (Monte Carlo methods) we can give answers – by probability statements – to the critical question at the top of the value staircase.

     

    Prescriptive-analytics

     

    This feature is a basic element of the S@R balance simulation model, where the Monte Carlo simulation can be stopped at any point on the probability distribution for company value  (i.e. very high or very low value of company) giving full set of reports: P&L and balance sheet etc. – enabling a full postmortem analysis: what it was that happened and why it did happen.

    Different courses of actions to repeat or avoid the result with high probability can then be researched and assessed. The EBITDA client specific model will capture relationships among many factors to allow simultaneous assessment of risk or potential associated with a particular set of conditions, guiding decision making for candidate transactions. Even the language we use to write the models are specially developed for making decision support systems.

    Our methods will as well include data and information visualization to clearly and effectively communicate both information and acquired knowledge – to reinforce comprehension and cognition.

    Firms may thus fruitfully apply analytics to business data, to describe, predict, and improve its business performance.

     

  • How we work

    How we work

    An initial meeting allows us to begin to understand each other and for us to gain an insight into a client’s business, ideas, ambitions and direction through an open but totally confidential exchange. Following one or possibly two further meetings and subject to client approval we prepare and submit a fully costed proposal of work, with time lines and key deliverables  made clear. (See:  S@R Services) .

    Formal acceptance of our proposal of work – its scope, scale, fees and costs, and timing initiates the program that will almost certainly require input and co- operation of key executives and managers at regular intervals during its life-cycle. All information, data and analysis will be handled according to relevant security standards.

    Depending upon the nature of the program, we usually take a phased approach enabling joint assessment at the end of each stage of work.

    On completion of an assignment we will deliver a comprehensive presentation and understandable report making clear our key recommendations and next steps to be pursued. We will not leave you at risk.

    If you are interested in S@R services, please do not hesitate contacting us to discuss how we can provide a solution satisfying your demands.