Warning: define(): Argument #3 ($case_insensitive) is ignored since declaration of case-insensitive constants is no longer supported in /home/u742613510/domains/strategy-at-risk.com/public_html/wp-content/plugins/wpmathpub/wpmathpub.php on line 65
Randomness – Strategy @ Risk

Tag: Randomness

  • M&A: When two plus two is five or three or …

    M&A: When two plus two is five or three or …

    When two plus two is five (Orwell, 1949)

    Introduction

    Mergers & Acquisitions (M&A) is a way for companies to expand rapidly and much faster than organic growth – that is coming from existing businesses – would have allowed. M&A’s have for decades been a trillion-dollar business, but empirical studies reports that a significant proportion must be considered as failures.

    The conventional wisdom – is that the majority of deals fail to add shareholder value to the acquiring company. According to this research, only 30-50% of deals are considered to be successful (See Bruner, 2002).

    If most deals fail, why do companies keep doing them? Is it because they think the odds won’t apply to them, or are executives more concerned with extending its influence and company growth (empire building) and not with increasing their shareholder (s) value?

    Many writers argue that these are the main reasons driving the M&A activities, with the implication that executives are basically greedy (because their compensation is often tied to the size of the company) – or incompetent.

    To be able to create shareholder value the M&A must give rise to some forms of synergy. Synergy is the ability of the merged companies to generate higher shareholder value (wealth) than the standalone entities. That is; that the whole will be greater than the sum it’s of parts.

    For many of the observed M&A’s however, the opposite have been the truth – value have been destroyed; the whole have turned out to be less than the sum of its parts (dysergy).

    “When asked to name just one big merger that had lived up to expectations, Leon Cooperman, former co-chairman of Goldman Sachs’ Investment Policy Committee, answered: I’m sure there are success stories out there, but at this moment I draw a blank.” (Sirower, 1997)

    The “apparent” M&A failures have also been attributed to both methodological and measurement problems, stating that evidence – as cost saving or revenue enhancement brought by the M&A is difficult to obtain after the fact. This might also apply to some of the success stories.

    What is surprising in most (all?) of the studies of M&A success and failures is the lack understanding of the stochastic nature of business activities. For any company it is impossible to estimate with certainty its equity value, the best we can do is to estimate a range of values and the probability that the true value will fall inside this range. The merger two companies amplify this, and the discussion of possible synergies or dysergies can only be understood in the context of randomness (stochasticity) ((See: the IFA.com – Probability Machine, Galton Board, Randomness and Fair Price Simulator, Quincunx at http://www.youtube.com/watch?v=AUSKTk9ENzg)).

    [tube] http://www.youtube.com/watch?v=AUSKTk9ENzg, 400,300 [/tube]

    The M&A cases

    Let’s assume that we have two companies A and B that are proposed merged. We have the distribution for each company’s equity value (shareholders value) for both companies and we can calculate the equity distribution for the merged company. Company A’s value is estimated to be in the range of 0 to 150M with expected value 90M. Company B’s value is estimated to be in the range of -40 to 200M with expected value 140M. (See figure below)

    If we merge the two companies assuming no synergy or dysergy we get the value (shareholder) distribution shown by the green curve in the figure. The merged company will have a value in the range of 65 to 321M, with an expected value of 230M. Since there is no synergy/dysergy no value have been created or destroyed by the merger.

    For company B no value would be added in the merger if A was bought at a price equal to or higher than the expected value of the company.  If it was bought at a price less than expected value, then there is a probability that the wealth of the shareholders of company B will increase. But even then it is not with certainty. All increase of wealth to the shareholders of company B will be at the expenses of the shareholders of company A and vice versa.

    Case 1

    If we assume that there is a “connection” between the companies, such that an increase in one of the company’s revenues also will increase the revenues in the other, we will have a synergy that can be exploited.

    This situation is depicted in the figure below. The green curve gives the case with no synergy and the blue the case described above. The difference between them is the synergies created by the merger. The synergy at the dotted line is the synergy we can expect, but it might turn out to be higher if revenues is high and even negative (dysergy) when revenues is low.

    If we produce a frequency diagram of the sizes of the possible synergies it will look as the diagram below. Have in mind that the average synergy value is not the value we would expect to find, but the average of all possible synergy values.

    Case 2

    If we assume that the “connection” between the companies is such that a reduction in one of the company’s revenues streams will reduce the total production costs, we again have a synergy that can be exploited.
    This situation is depicted in the figure below. The green curve gives the case with no synergy and the red the case described above. The difference between them is again the synergies created by the merger. The synergy at the dotted line is the synergy we can expect, but it might turn out to be higher if revenues is lower and even negative (dysergy) when revenues is high.

    In this case, the merger acts as a hedge against revenue losses at the cost of parts of the upside created by the merger. This should not deter the participants from a merger since there is only a 30 % probability that this will happen.

    The graph above again gives the frequency diagram for the sizes of the possible synergies. Have in mind that the average synergy value is not the value we would expect to find, but the average of all possible synergy values.

    Conclusion

    The elusiveness of synergies in many M&A cases can be explained by the natural randomness in business activities. The fact that a merger can give rise to large synergies does not guarantee that it will occur, only that there is a probability that it will occur. Spread sheet exercises in valuation can lead to disaster if the stochastic nature of the involved companies is not taken into account. AND basing the pricing of the M&A candidate on expected synergies is pure foolishness.

    References

    Bruner, Robert F. (2002), Does M&A Pay? A Survey of Evidence for the Decision-Maker. Journal of Applied Finance, Vol. 12, No. 1. Available at SSRN: http://ssrn.com/abstract=485884

    Orwell, George (1949). Nineteen Eighty-Four. A novel. London: Secker & Warburg.

    The whole is more than the sum of its parts. Aristotle, Metaphysica

     

    Sirower, M. (1997) The Synergy Trap: How Companies Lose the Acquisition Game. New York. The Free Press.

  • The tool that would improve everybody’s toolkit

    The tool that would improve everybody’s toolkit

    Edge, which every year ((http://www.edge.org/questioncenter.html))   invites scientists, philosophers, writers, thinkers and artists to opine on a major question of the moment, asked this year: “What scientific concept would improve everybody’s cognitive toolkit?”

    The questions are designed to provoke fascinating, yet inspiring answers, and are typically open-ended, such as:  “What will change everything” (2008), “What are you optimistic about?” (2007), and “How is the internet changing the way you think?” (Last’s years question). Often these questions ((Since 1998))  are turned into paperback books.

    This year many of the 151 contributors pointed to Risk and Uncertainty in their answers. In the following we bring excerpt from some of the answers. We will however advice the interested reader to look up the complete answers:

    A Probability Distribution

    The notion of a probability distribution would, I think, be a most useful addition to the intellectual toolkit of most people.

    Most quantities of interest, most projections, most numerical assessments are not point estimates. Rather they are rough distributions — not always normal, sometimes bi-modal, sometimes exponential, sometimes something else.

    Related ideas of mean, median, and variance are also important, of course, but the simple notion of a distribution implicitly suggests these and weans people from the illusion that certainty and precise numerical answers are always attainable.

    JOHN ALLEN PAULOS, Professor of Mathematics, Temple University, Philadelphia.

    Randomness

    The First Law of Randomness: There is such a thing as randomness.
    The Second Law of Randomness: Some events are impossible to predict.
    The Third Law of Randomness: Random events behave predictably in aggregate even if they’re not predictable individually

    CHARLES SEIFE, Professor of Journalism, New York University; formerly journalist, Science magazine; Author, Proofiness: The Dark Arts of Mathematical Deception.

    The Uselessness of Certainty

    Every knowledge, even the most solid, carries a margin of uncertainty. (I am very sure about my own name … but what if I just hit my head and got momentarily confused?) Knowledge itself is probabilistic in nature, a notion emphasized by some currents of philosophical pragmatism. Better understanding of the meaning of probability, and especially realizing that we never have, nor need, ‘scientifically proven’ facts, but only a sufficiently high degree of probability, in order to take decisions and act, would improve everybody’ conceptual toolkit.

    CARLO ROVELLI, Physicist, University of Aix-Marseille, France; Author, The First Scientist: Anaximander and the Nature of Science.

    Uncertainty

    Until we can quantify the uncertainty in our statements and our predictions, we have little idea of their power or significance. So too in the public sphere. Public policy performed in the absence of understanding quantitative uncertainties, or even understanding the difficulty of obtaining reliable estimates of uncertainties usually means bad public policy.

    LAWRENCE KRAUSS, Physicist, Foundation Professor & Director, Origins Project, Arizona State University; Author, A Universe from Nothing; Quantum Man: Richard Feynman’s Life in Science.

    Risk Literacy

    Literacy — the ability to read and write — is the precondition for an informed citizenship in a participatory democracy. But knowing how to read and write is no longer enough. The breakneck speed of technological innovation has made risk literacy as indispensable in the 21st century as reading and writing were in the 20th century. Risk literacy is the ability to deal with uncertainties in an informed way.

    GERD GIGERENZER, Psychologist; Director of the Center for Adaptive Behavior and Cognition at the Max Planck Institute for Human Development in Berlin; Author, Gut Feelings.

    Living is fatal

    The ability to reason clearly in the face of uncertainty. If everybody could learn to deal better with the unknown, then it would improve not only their individual cognitive toolkit (to be placed in a slot right next to the ability to operate a remote control, perhaps), but the chances for humanity as a whole.

    SETH LLOYD, Quantum Mechanical Engineer, MIT; Author, Programming the Universe.

    Uncalculated Risk

    We humans are terrible at dealing with probability. We are not merely bad at it, but seem hardwired to be incompetent, in spite of the fact that we encounter innumerable circumstances every day which depend on accurate probabilistic calculations for our wellbeing. This incompetence is reflected in our language, in which the common words used to convey likelihood are “probably” and “usually” — vaguely implying a 50% to 100% chance. Going beyond crude expression requires awkwardly geeky phrasing, such as “with 70% certainty,” likely only to raise the eyebrow of a casual listener bemused by the unexpected precision. This blind spot in our collective consciousness — the inability to deal with probability — may seem insignificant, but it has dire practical consequences. We are afraid of the wrong things, and we are making bad decisions.

    GARRETT LISI, Independent Theoretical Physicist

    And there is more … much more at the Edge site

  • Risk – Exposure to Gain and Loss

    Risk – Exposure to Gain and Loss

    This entry is part 4 of 6 in the series Monte Carlo Simulation

     

    It is first when the decision involves consequences for the decision maker he faces a situation of risk. A traditional way of understanding risk is to calculate how much a certain event varies over time. The less it varies the minor the risk. In every decision where historical data exists we can identify historical patterns, study them and calculate how much they varies. Such a study gives us a good impression of what kind of risk profile we face.

    • Risk – randomness with knowable probabilites.
    • Uncertainty – randomness with unknowable probabilities.

    Another situation occurs when little or no historical data is available but we know fairly well all the options (e.g. tossing a dice). We have a given resource, certain alternatives and a limited number of trials. This is equal to the Manahattan project.

    In both cases we are interested in the probability of success. We like to get a figure, a percentage of the probability for gain or loss. When we know that number we can decide whether we will accept the risk or not.

    Just to illustrate risk, budgeting makes a good example. If we have five items in our budget where we have estimated the expected values (that is 50% probability) it is only three percent probability that all five will target their expectation at the same time.

    0.5^5 = 3,12%

    A common mistake is to summarize the items rather than multiplying them. The risk is expressed by the product of the opportunities.

  • Risk and Monte Carlo simulation

    Risk and Monte Carlo simulation

    This entry is part 1 of 6 in the series Monte Carlo Simulation

     

    Risk, when does it occur? Whenever the outcome of a situation is not perfectly certain you have uncertainty or risk. Investment decisions taken under these circumstances involve a probability for an outcome that will differ from your estimated target. Decisions taken under uncertainty are a reality and a constraint manager’s face. In order to reduce the risk (probability of gain/loss) you have basically two ways of doing it, reduce the exposure or try to reduce the uncertainty by gathering more information.

    Risk – randomness with knowable probabilities.

    Uncertainty – randomness with unknowable probabilities.

    The problem with information is very often the lack of it due to cost and time factors. A major point in this context is that uncertainty can be reduced but risk can be calculated.

    We will illustrate this by describing a typical investment decision and look into the decisions and how they can be enhanced by taking advantage of calculating the risk by using Monte Carlo Simulation. This is a method especially developed to handle situations with uncertainty and to calculate the risk involved. The logic is fairly simple and the applications are numerous.

    Most business concepts involve various proportions of income, costs and investments. We will in the following use the philosophy that every decisions shall be taken in order to maximize shareholder value, corporate competitiveness and customer satisfaction.

    We have here split the decision process into various steps in order illustrate actually how easy it is to do it. By clicking on each theme you will see how we have given a flavor on how the problem can be solved.