Warning: define(): Argument #3 ($case_insensitive) is ignored since declaration of case-insensitive constants is no longer supported in /home/u742613510/domains/strategy-at-risk.com/public_html/wp-content/plugins/wpmathpub/wpmathpub.php on line 65
Revenue – Strategy @ Risk

Category: Revenue

  • Uncertainty modeling

    Uncertainty modeling

    This entry is part 2 of 3 in the series What We Do

    Prediction is very difficult, especially about the future.
    Niels Bohr. Danish physicist (1885 – 1962)

    Strategy @ Risks models provide the possibility to study risk and uncertainties related to operational activities;  cost, prices, suppliers,  markets, sales channels etc. financial issues like; interest rates risk, exchange rates risks, translation risk , taxes etc., strategic issues like investments in new or existing activities, valuation and M&As’ etc and for a wide range of budgeting purposes.

    All economic activities have an inherent volatility that is an integrated part of its operations. This means that whatever you do some uncertainty will always remain.

    The aim is to estimate the economic impact that such critical uncertainty may have on corporate earnings at risk. This will add a third dimension – probability – to all forecasts, give new insight: the ability to deal with uncertainties in an informed way and thus benefits above ordinary spread-sheet exercises.

    The results from these analyzes can be presented in form of B/S and P&L looking at the coming one to five (short term) or five to fifteen years (long term); showing the impacts to e.g. equity value, company value, operating income etc. With the purpose of:

    • Improve predictability in operating earnings and its’ expected volatility
    • Improve budgeting processes, predicting budget deviations and its’ probabilities
    • Evaluate alternative strategic investment options at risk
    • Identify and benchmark investment portfolios and their uncertainty
    • Identify and benchmark individual business units’ risk profiles
    • Evaluate equity values and enterprise values and their uncertainty in M&A processes, etc.

    Methods

    To be able to add uncertainty to financial models, we also have to add more complexity. This complexity is inevitable, but in our case, it is desirable and it will be well managed inside our models.

    People say they want models that are simple, but what they really want is models with the necessary features – that are easy to use. If something is complex but well designed, it will be easy to use – and this holds for our models.

    Most companies have some sort of model describing the company’s operations. They are mostly used for budgeting, but in some cases also for forecasting cash flow and other important performance measures. Almost all are deterministic models based on expected or average values of input data; sales, cost, interest and currency rates etc.

    We know however that forecasts based on average values are on average wrong. In addition will deterministic models miss the important uncertainty dimension that gives both the different risks facing the company and the opportunities they bring forth.

    S@R has set out to create models that can give answers to both deterministic and stochastic questions, by linking dedicated Ebitda models to holistic balance simulation taking into account all important factors describing the company. The basis is a real balance simulation model – not a simple cash flow forecast model.

    Both the deterministic and stochastic balance simulation can be set about in two different alternatives:

    1. by a using a EBITDA model to describe the companies operations or
    2. by using coefficients of fabrications (e.g. kg flour pr 1000 bread etc.) as direct input to the balance model – the ‘short cut’ method.

    The first approach implies setting up a dedicated Ebitda subroutine to the balance model. This will give detailed answers to a broad range of questions about markets, capacity driven investments, operational performance and uncertainty, but entails a higher degree of effort from both the company and S@R. This is a tool for long term planning and strategy development.

    The second (‘the short cut’) uses coefficients of fabrications and their variations, and is a low effort (cost) alternative, usually using the internal accounting as basis. This will in many cases give a ‘good enough’ description of the company – its risks and opportunities. It can be based on existing investment and market plans.  The data needed for the company’s economic environment (taxes, interest rates etc) will be the same in both alternatives:

    The ‘short cut’ approach is especially suited for quick appraisals of M&A cases where time and data is limited and where one wishes to limit efforts in an initial stage. Later the data and assumptions can be augmented to much more sophisticated analysis within the same ‘short cut’ framework. In this way analysis can be successively built in the direction the previous studies suggested.

    This also makes it a good tool for short-term (3-5 years) analysis and even for budget assessment. Since it will use a limited number of variables – usually less than twenty – describing the operations, it is easy to maintain and operate. The variables describing financial strategy and the economic environment come in addition, but will be easy to obtain.

    Used in budgeting it will give the opportunity to evaluate budget targets, their probable deviation from expected result and the probable upside or down side given the budget target (Upside/downside ratio).

    Done this way analysis can be run for subsidiaries across countries translating the P&L and Balance to any currency for benchmarking, investment appraisals, risk and opportunity assessments etc. The final uncertainty distributions can then be “aggregated’ to show global risk for the mother company.

    An interesting feature is the models ability to start simulations with an empty opening balance. This can be used to assess divisions that do not have an independent balance since the model will call for equity/debt etc. based on a target ratio, according to the simulated production and sales and the necessary investments. Questions about further investment in divisions or product lines can be studied this way.

    Since all runs (500 to 1000) in the simulation produces a complete P&L and Balance the uncertainty curve (distribution) for any financial metric like ‘Yearly result’, ‘free cash flow’, economic profit’, ‘equity value’, ‘IRR’ or’ translation gain/loss’ etc. can be produced.

    In some cases we have used both approaches for the same client, using the last approach for smaller daughter companies with production structures differing from the main companies.
    The second approach can also be considered as an introduction and stepping stone to a more holistic Ebitda model.

    Time and effort

    The work load for the client is usually limited to a small team of people ( 1 to 3 persons) acting as project leaders and principal contacts, assuring that all necessary information, describing value and risks for the clients’ operations can be collected as basis for modeling and calculations. However the type of data will have to be agreed upon depending on the scope of analysis.

    Very often will key people from the controller group be adequate for this work and if they don’t have the direct knowledge they usually know who to ask. The work for this team, depending on the scope and choice of method (see above) can vary in effective time from a few days to a couple of weeks, but this can be stretched from three to four weeks to the same number of months.

    For S&R the time frame will depend on the availability of key personnel from the client and the availability of data. For the second alternative it can take from one to three weeks of normal work to three to six months for the first alternative for more complex models. The total time will also depend on the number of analysis that needs to be run and the type of reports that has to be delivered.

    S@R_ValueSim

    Selecting strategy

    Models like this are excellent for selection and assessment of strategies. Since we can find the probability distribution for equity value, changes in this brought by different strategies will form a basis for selection or adjustment of current strategy. Models including real option strategies are a natural extension of these simulation models:

    If there is a strategy with a curve to the right and under all other feasible strategies this will be the stochastic dominant one. If the curves crosses further calculations needs to be done before a stochastic dominant or preferable strategy can be found:

    Types of problems we aim to address:

    The effects of uncertainties on the P&L and Balance and the effects of the Boards strategies (market, hedging etc.) on future P&L and Balance sheets evaluating:

    • Market position and potential for growth
    • Effects of tax and capital cost
    • Strategies
    • Business units, country units or product lines –  capital allocation – compare risk, opportunity and expected profitability
    • Valuations, capital cost and debt requirements, individually and effect on company
    • The future cash-flow volatility of company and the individual BU’s
    • Investments, M&A actions, their individual value, necessary commitments and impact on company
    • Etc.

    The aim regardless of approach is to quantify not only the company’s single and aggregated risks, but also the potential, thus making the company capable to perform detailed planning and of executing earlier and more apt actions against uncertain factors.

    Used in budgeting, this will improve budget stability through higher insight in cost side risks and income-side potentials. This is achieved by an active budget-forecast process; the control-adjustment cycle will teach the company to better target realistic budgets – with better stability and increased company value as a result.

    This is most clearly seen when effort is put into correctly evaluating strategies-projects and investments effects on the enterprise. The best way to do this is by comparing and Choosing strategies by analyzing the individual strategies risks and potential – and select the alternative that is dominant (stochastic) given the company’s chosen risk-profile.

    A severe depression like that of 1920-1921 is outside the range of probability. –The Harvard Economic Society, 16 November 1929

  • The Uncertainty in Forecasting Airport Pax

    The Uncertainty in Forecasting Airport Pax

    This entry is part 3 of 4 in the series Airports

     

    When planning airport operations, investments both air- and land side or only making next years budget you need to make some forecasts of what traffic you can expect. Now, there are many ways of doing that most of them ending up with a single figure for the monthly or weekly traffic. However we do know that the probability for that figure to be correct is near zero, thus we end up with plans based on assumptions that most likely newer will happen.

    This is why we use Monte Carlo simulation to get a grasp of the uncertainty in our forecast and how this uncertainty develops as we go into the future. The following graph (from real life) shows how the passenger distribution changes as we go from year 2010 (blue) to 2017 (red). The distribution moves outwards showing an expected increase in Pax at the same time it spreads out on the x-axis (Pax) giving a good picture of the increased uncertainty we face.

    Pax-2010_2017This can also be seen from the yearly cumulative probability distributions given below. As we move out into the future the distributions are leaning more and more to the right while still being “anchored” on the left to approximately the same place – showing increased uncertainty in the future Pax forecasts. However our confidence in that the airport will reach at least 40M Pax during the next 5 years is bolstered.

    Pax_DistributionsIf we look at the fan-chart for the Pax forecasts below, the limits of the dark blue region give the lower (25%) and upper (75%) quartiles for the yearly Pax distributions i.e. the region where we expect with 50% probability the actual Pax figures to fall.

    Pax_Uncertainty

    The lower und upper limits give the 5% and 95% percentiles for the yearly Pax distributions i.e. we can expect with 90% probability that the actual Pax figures will fall somewhere inside these three regions.

    As shown the uncertainty about the future yearly Pax figures is quite high. With this as the backcloth for airport planning it is evident that the stochastic nature of the Pax forecasts has to be taken into account when investment decisions (under uncertainty) are to be made. (ref) Since the airport value will relay heavily on these forecasts it is also evident that this value will be stochastic and that methods from decision making under uncertainty have to be used for possible M&R.

    Major Airport Operation Disruptions

    Delays – the time lapse which occurs when a planned event does not happen at the planned time – are pretty common at most airports Eurocontrol  estimates it on average to approx 13 min on departure for 45%  of the flights and approx 12 min for arrivals in 42% of the flights (Guest, 2007). Nevertheless the airport costs of such delays are small; it can even give an increase in revenue (Cook, Tanner, & Anderson, 2004).

    We have lately in Europe experienced major disruptions in airport operations thru closing of airspace due to volcanic ash. Closed airspace give a direct effect on airport revenue and a higher effect the closer it is to an airport. Volcanic eruptions in some regions might be considered as Black Swan events to an airport, but there are a large number of volcanoes that might cause closing of airspace for shorter or longer time. The Smithsonian Global Volcanism Program lists more than 540 volcanoes with previous documented eruption.

    As there is little data for events like this it is difficult to include the probable effects of closed airspace due to volcanic eruptions in the simulation. However, the data includes effects of the 9/11 terrorist attack and the left tails of the yearly Pax distributions will be influenced by this.

    References

    Guest, Tim. (2007, September). A Matter of time: air traffic delay in Europe. , EUROCONTROL Trends in Air Traffic I, 2.

    Cook, A., Tanner, G., & Anderson, S. (2004). Evaluating the true cost to airlines of one minute of airborne or ground delay: final report. [University of Westminster]. Retrieved from, www.eurocontrol.int/prc/gallery/content/public/Docs/cost_of_delay.pdf

  • Concession Revenue Modelling and Forecasting

    Concession Revenue Modelling and Forecasting

    This entry is part 2 of 4 in the series Airports

     

    Concessions are an important source of revenue for all airports. An airport simulation model should therefore be able to give a good forecast of revenue from different types of concessions -given a small set of assumptions about local future price levels and income development for its international Pax. Since we already have a good forecast model for the expected number of international Pax (and its variation) we will attempt to forecast the airports revenue pr Pax from one type of concession and use both forecasts to estimate the airports revenue from that concession.

    The theory behind is simple; the concessionaires sales is a function of product price and the customers (Pax) income level. Some other airport specific variables also enter the equation however they will not be discussed here. As a proxy for change in Pax income we will use the individual countries change in GDP.  The price movement is represented by the corresponding movements of a price index.

    We assume that changes in the trend for the airports revenue is a function of the changes in the general income level and that the seasonal variance is caused by the seasonal changes in the passenger mix (business/leisure travel).

    It is of course impossible to forecast the exact level of revenue, but that is as we shall see where Monte Carlo simulation proves its worth.

    The fist step is a time series analysis of the observed revenue pr Pax, decomposing the series in trend and seasonal factors:

    Concession-revenue

    The time series fit turns out to be very good explaining more than 90 % of the series variation. At this point however our only interest is the trend movements and its relation to change in prices, income and a few other airport specific variables. We will however here only look at income – the most important of the variable.

    Step two, is a time series analysis of income (weighted average of GDP development in countries with majority of Pax) separating trend and seasonal factors. This trend is what we are looking for; we want to use it to explain the trend movements in the revenue.

    Step three, is then a regression of the revenue trend on the income trend as shown in the graph below. The revenue trend was estimated assuming a quadratic relation over time and we can see that the fit is good. In fact 98 % of the variance in the revenue trend can be explained by the change in income (+) trend:

    Concession-trend

    Now the model will be as follows – step four:

    1. We will collect the central banks GDP forecasts (base line scenario) and use this to forecast the most likely change in income trend
    2. More and more central banks are now producing fan charts giving the possible event space (with probabilities) for their forecasts. We will use this to establish a probability distribution for our income proxy

    Below is given an example of a fan chart taken from the Bank of England’s inflation report November 2009. (Bank of England, 2009) ((The fan chart depicts the probability of various outcomes for GDP growth.  It has been conditioned on the assumption that the stock of purchased assets financed by the issuance of central bank reserves reaches £200 billion and remains there throughout the forecast period.  To the left of the first vertical dashed line, the distribution reflects the likelihood of revisions to the data over the past; to the right, it reflects uncertainty over the evolution of GDP growth in the future.  If economic circumstances identical to today’s were to prevail on 100 occasions, the MPC’s best collective judgement is that the mature estimate of GDP growth would lie within the darkest central band on only 10 of those occasions.  The fan chart is constructed so that outturns are also expected to lie within each pair of the lighter green areas on 10 occasions.  In any particular quarter of the forecast period, GDP is therefore expected to lie somewhere within the fan on 90 out of 100 occasions.  The bands widen as the time horizon is extended, indicating the increasing uncertainty about outcomes.  See the box on page 39 of the November 2007 Inflation Report for a fuller description of the fan chart and what it represents.  The second dashed line is drawn at the two-year point of the projection.))

    Bilde1

    3. We will then use the relation between historic revenue and income trend to forecast the revenue trend
    4. Adding the seasonal variation using the estimated seasonal factors – give us a forecast of the periodic revenue.

    For our historic data the result is shown in the graph below:

    Concession-revenue-estimate

    The calculated revenue series have a very high correlation with the observed revenue series (R=0.95) explaining approximately 90% of the series variation.

    Step five, now we can forecast the revenue from concession pr Pax figures for the next periods (month, quarters or years), using Monte Carlo simulation:

    1. From the income proxy distribution we draw a possible change in yearly income and calculates the new trend
    2. Using the estimated relation between historic revenue and income trend we forecast the most likely revenue trend and calculate the 95% confidence interval. We then use this to establish a probability distribution for the period’s trend level and draws a value. This value is adjusted with the period’s seasonal factor and becomes our forecasted value for the airports revenue from the concession – for this period.

    Running thru this a thousand times we get a distribution as given below:

    Concession-revenue-distribuIn the airport EBITDA model this only a small but important part for forecasting future airport revenue. As the models data are updated (monthly) all the time series analysis and regressions are redone dynamically to capture changes in trends and seasonal factors.

    The level of monthly revenue from the concession is obviously more complex than can be described with a small set of variable and assumptions. Our model has with high probability specification errors and we may or may not have violated some of the statistical methods assumptions (the model produces output to monitor this). But we feel that we are far better of than having put all our money on a single figure as a forecast. At least we know something about the forecasts uncertainty.

    References

    Bank of England. (2009, November). Inflation Report November 2009 . Retrieved from http://www.bankofengland.co.uk/publications/inflationreport/ir09nov5.ppt